Defluorination/fluorination mechanism of Bi0.8Ba0.2F2.8 as a fluoride shuttle battery positive electrode

•Bi0.8Ba0.2F2.8 is prepared as a new fluoride shuttle battery electrode material.•Bi0.8Ba0.2F2.8 decomposes into metallic Bi and BaF2 by defluorination.•Conversion reaction between Bi and BiF3 occurs in the subsequent cycles.•Cycle performance may be improved by suppression of coarsening of BiF3 par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2021-08, Vol.895, p.115508, Article 115508
Hauptverfasser: Shimoda, Keiji, Minato, Taketoshi, Konishi, Hiroaki, Kano, Gentaro, Nakatani, Tomotaka, Fujinami, So, Celik Kucuk, Asuman, Kawaguchi, Shogo, Ogumi, Zempachi, Abe, Takeshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115508
container_title Journal of electroanalytical chemistry (Lausanne, Switzerland)
container_volume 895
creator Shimoda, Keiji
Minato, Taketoshi
Konishi, Hiroaki
Kano, Gentaro
Nakatani, Tomotaka
Fujinami, So
Celik Kucuk, Asuman
Kawaguchi, Shogo
Ogumi, Zempachi
Abe, Takeshi
description •Bi0.8Ba0.2F2.8 is prepared as a new fluoride shuttle battery electrode material.•Bi0.8Ba0.2F2.8 decomposes into metallic Bi and BaF2 by defluorination.•Conversion reaction between Bi and BiF3 occurs in the subsequent cycles.•Cycle performance may be improved by suppression of coarsening of BiF3 particles. Fluoride shuttle batteries (FSBs), which utilize F– ion migration in electrochemical reactions, have recently advanced in academic research as next-generation rechargeable batteries. Bismuth trifluoride (BiF3) and its relatives are expected to be promising positive electrode materials for FSBs because of their high theoretical capacity. Herein, the defluorination/fluorination reaction of a BaF2-doped BiF3, Bi0.8Ba0.2F2.8, positive electrode was investigated using synchrotron-radiation X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy. The Bi0.8Ba0.2F2.8 electrode showed a higher reversible capacity in the first cycle and improved capacity retention compared to the BiF3 electrode. The pristine Bi0.8Ba0.2F2.8 showed a tysonite-type structure, and metallic Bi and BaF2 nanoparticles were observed in the fully defluorinated state. Moreover, we found that the (re-)fluorinated material consisted of BiF3 and BaF2 nanoparticles, indicating that bismuth is the only redox-active element, and that the tysonite structure is not recovered after the initial discharging. This suggests that the cycle performance of the Bi0.8Ba0.2F2.8 electrode may be improved due to the suppression of the coarsening of BiF3 nanoparticles by the adhesion of BaF2 nanoparticles formed after initial defluorination.
doi_str_mv 10.1016/j.jelechem.2021.115508
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568030204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1572665721005348</els_id><sourcerecordid>2568030204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4138-569b77b9ad2622328683604c84922e77d5c51320f6d44779d00e9f7c1accb9083</originalsourceid><addsrcrecordid>eNqFkNFLwzAQxosoOKf_ggR8bndJ2yR9002nwsAXfQ5ZemUpbTOTbuB_b0YVfPPp7uC77777JckthYwC5Ys2a7FDs8M-Y8BoRmlZgjxLZlSKPGUlr85jXwqWcl6Ky-QqhBaASUnZLNk9YtMdnLeDHq0bFn8H0kdXPdjQE9eQpYVMLjVkbM0ySXQgmkzqGknYHcaxQ7LV44j-i-xdsKM9IjklG72r8Tq5aHQX8OanzpOP9dP76iXdvD2_rh42qSloLtOYdivEttI144zlTHKZcyiMLCrGUIi6NCXNGTS8LgohqhoAq0YYqo3ZViDzeXI3-e69-zxgGFXrDn6IJ1VEISEHBkVU8UllvAvBY6P23vbafykK6kRVteqXqjpRVRPVuHg_LWL84WjRq2AsDgZr6-Onqnb2P4tvBJmCVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568030204</pqid></control><display><type>article</type><title>Defluorination/fluorination mechanism of Bi0.8Ba0.2F2.8 as a fluoride shuttle battery positive electrode</title><source>ScienceDirect</source><creator>Shimoda, Keiji ; Minato, Taketoshi ; Konishi, Hiroaki ; Kano, Gentaro ; Nakatani, Tomotaka ; Fujinami, So ; Celik Kucuk, Asuman ; Kawaguchi, Shogo ; Ogumi, Zempachi ; Abe, Takeshi</creator><creatorcontrib>Shimoda, Keiji ; Minato, Taketoshi ; Konishi, Hiroaki ; Kano, Gentaro ; Nakatani, Tomotaka ; Fujinami, So ; Celik Kucuk, Asuman ; Kawaguchi, Shogo ; Ogumi, Zempachi ; Abe, Takeshi</creatorcontrib><description>•Bi0.8Ba0.2F2.8 is prepared as a new fluoride shuttle battery electrode material.•Bi0.8Ba0.2F2.8 decomposes into metallic Bi and BaF2 by defluorination.•Conversion reaction between Bi and BiF3 occurs in the subsequent cycles.•Cycle performance may be improved by suppression of coarsening of BiF3 particles. Fluoride shuttle batteries (FSBs), which utilize F– ion migration in electrochemical reactions, have recently advanced in academic research as next-generation rechargeable batteries. Bismuth trifluoride (BiF3) and its relatives are expected to be promising positive electrode materials for FSBs because of their high theoretical capacity. Herein, the defluorination/fluorination reaction of a BaF2-doped BiF3, Bi0.8Ba0.2F2.8, positive electrode was investigated using synchrotron-radiation X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy. The Bi0.8Ba0.2F2.8 electrode showed a higher reversible capacity in the first cycle and improved capacity retention compared to the BiF3 electrode. The pristine Bi0.8Ba0.2F2.8 showed a tysonite-type structure, and metallic Bi and BaF2 nanoparticles were observed in the fully defluorinated state. Moreover, we found that the (re-)fluorinated material consisted of BiF3 and BaF2 nanoparticles, indicating that bismuth is the only redox-active element, and that the tysonite structure is not recovered after the initial discharging. This suggests that the cycle performance of the Bi0.8Ba0.2F2.8 electrode may be improved due to the suppression of the coarsening of BiF3 nanoparticles by the adhesion of BaF2 nanoparticles formed after initial defluorination.</description><identifier>ISSN: 1572-6657</identifier><identifier>EISSN: 1873-2569</identifier><identifier>DOI: 10.1016/j.jelechem.2021.115508</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Barium fluorides ; Batteries ; Bismuth ; Bismuth trifluoride ; Chemical reactions ; Defluorination ; Electrode materials ; Electrodes ; Fluoride shuttle battery ; Fluorides ; Fluorination ; Ion migration ; Lithium ; Nanoparticles ; Rechargeable batteries ; Synchrotrons ; Tysonite ; X ray absorption</subject><ispartof>Journal of electroanalytical chemistry (Lausanne, Switzerland), 2021-08, Vol.895, p.115508, Article 115508</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Aug 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4138-569b77b9ad2622328683604c84922e77d5c51320f6d44779d00e9f7c1accb9083</citedby><cites>FETCH-LOGICAL-c4138-569b77b9ad2622328683604c84922e77d5c51320f6d44779d00e9f7c1accb9083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jelechem.2021.115508$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Shimoda, Keiji</creatorcontrib><creatorcontrib>Minato, Taketoshi</creatorcontrib><creatorcontrib>Konishi, Hiroaki</creatorcontrib><creatorcontrib>Kano, Gentaro</creatorcontrib><creatorcontrib>Nakatani, Tomotaka</creatorcontrib><creatorcontrib>Fujinami, So</creatorcontrib><creatorcontrib>Celik Kucuk, Asuman</creatorcontrib><creatorcontrib>Kawaguchi, Shogo</creatorcontrib><creatorcontrib>Ogumi, Zempachi</creatorcontrib><creatorcontrib>Abe, Takeshi</creatorcontrib><title>Defluorination/fluorination mechanism of Bi0.8Ba0.2F2.8 as a fluoride shuttle battery positive electrode</title><title>Journal of electroanalytical chemistry (Lausanne, Switzerland)</title><description>•Bi0.8Ba0.2F2.8 is prepared as a new fluoride shuttle battery electrode material.•Bi0.8Ba0.2F2.8 decomposes into metallic Bi and BaF2 by defluorination.•Conversion reaction between Bi and BiF3 occurs in the subsequent cycles.•Cycle performance may be improved by suppression of coarsening of BiF3 particles. Fluoride shuttle batteries (FSBs), which utilize F– ion migration in electrochemical reactions, have recently advanced in academic research as next-generation rechargeable batteries. Bismuth trifluoride (BiF3) and its relatives are expected to be promising positive electrode materials for FSBs because of their high theoretical capacity. Herein, the defluorination/fluorination reaction of a BaF2-doped BiF3, Bi0.8Ba0.2F2.8, positive electrode was investigated using synchrotron-radiation X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy. The Bi0.8Ba0.2F2.8 electrode showed a higher reversible capacity in the first cycle and improved capacity retention compared to the BiF3 electrode. The pristine Bi0.8Ba0.2F2.8 showed a tysonite-type structure, and metallic Bi and BaF2 nanoparticles were observed in the fully defluorinated state. Moreover, we found that the (re-)fluorinated material consisted of BiF3 and BaF2 nanoparticles, indicating that bismuth is the only redox-active element, and that the tysonite structure is not recovered after the initial discharging. This suggests that the cycle performance of the Bi0.8Ba0.2F2.8 electrode may be improved due to the suppression of the coarsening of BiF3 nanoparticles by the adhesion of BaF2 nanoparticles formed after initial defluorination.</description><subject>Barium fluorides</subject><subject>Batteries</subject><subject>Bismuth</subject><subject>Bismuth trifluoride</subject><subject>Chemical reactions</subject><subject>Defluorination</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Fluoride shuttle battery</subject><subject>Fluorides</subject><subject>Fluorination</subject><subject>Ion migration</subject><subject>Lithium</subject><subject>Nanoparticles</subject><subject>Rechargeable batteries</subject><subject>Synchrotrons</subject><subject>Tysonite</subject><subject>X ray absorption</subject><issn>1572-6657</issn><issn>1873-2569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkNFLwzAQxosoOKf_ggR8bndJ2yR9002nwsAXfQ5ZemUpbTOTbuB_b0YVfPPp7uC77777JckthYwC5Ys2a7FDs8M-Y8BoRmlZgjxLZlSKPGUlr85jXwqWcl6Ky-QqhBaASUnZLNk9YtMdnLeDHq0bFn8H0kdXPdjQE9eQpYVMLjVkbM0ySXQgmkzqGknYHcaxQ7LV44j-i-xdsKM9IjklG72r8Tq5aHQX8OanzpOP9dP76iXdvD2_rh42qSloLtOYdivEttI144zlTHKZcyiMLCrGUIi6NCXNGTS8LgohqhoAq0YYqo3ZViDzeXI3-e69-zxgGFXrDn6IJ1VEISEHBkVU8UllvAvBY6P23vbafykK6kRVteqXqjpRVRPVuHg_LWL84WjRq2AsDgZr6-Onqnb2P4tvBJmCVg</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Shimoda, Keiji</creator><creator>Minato, Taketoshi</creator><creator>Konishi, Hiroaki</creator><creator>Kano, Gentaro</creator><creator>Nakatani, Tomotaka</creator><creator>Fujinami, So</creator><creator>Celik Kucuk, Asuman</creator><creator>Kawaguchi, Shogo</creator><creator>Ogumi, Zempachi</creator><creator>Abe, Takeshi</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210815</creationdate><title>Defluorination/fluorination mechanism of Bi0.8Ba0.2F2.8 as a fluoride shuttle battery positive electrode</title><author>Shimoda, Keiji ; Minato, Taketoshi ; Konishi, Hiroaki ; Kano, Gentaro ; Nakatani, Tomotaka ; Fujinami, So ; Celik Kucuk, Asuman ; Kawaguchi, Shogo ; Ogumi, Zempachi ; Abe, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4138-569b77b9ad2622328683604c84922e77d5c51320f6d44779d00e9f7c1accb9083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barium fluorides</topic><topic>Batteries</topic><topic>Bismuth</topic><topic>Bismuth trifluoride</topic><topic>Chemical reactions</topic><topic>Defluorination</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Fluoride shuttle battery</topic><topic>Fluorides</topic><topic>Fluorination</topic><topic>Ion migration</topic><topic>Lithium</topic><topic>Nanoparticles</topic><topic>Rechargeable batteries</topic><topic>Synchrotrons</topic><topic>Tysonite</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimoda, Keiji</creatorcontrib><creatorcontrib>Minato, Taketoshi</creatorcontrib><creatorcontrib>Konishi, Hiroaki</creatorcontrib><creatorcontrib>Kano, Gentaro</creatorcontrib><creatorcontrib>Nakatani, Tomotaka</creatorcontrib><creatorcontrib>Fujinami, So</creatorcontrib><creatorcontrib>Celik Kucuk, Asuman</creatorcontrib><creatorcontrib>Kawaguchi, Shogo</creatorcontrib><creatorcontrib>Ogumi, Zempachi</creatorcontrib><creatorcontrib>Abe, Takeshi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimoda, Keiji</au><au>Minato, Taketoshi</au><au>Konishi, Hiroaki</au><au>Kano, Gentaro</au><au>Nakatani, Tomotaka</au><au>Fujinami, So</au><au>Celik Kucuk, Asuman</au><au>Kawaguchi, Shogo</au><au>Ogumi, Zempachi</au><au>Abe, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defluorination/fluorination mechanism of Bi0.8Ba0.2F2.8 as a fluoride shuttle battery positive electrode</atitle><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>895</volume><spage>115508</spage><pages>115508-</pages><artnum>115508</artnum><issn>1572-6657</issn><eissn>1873-2569</eissn><abstract>•Bi0.8Ba0.2F2.8 is prepared as a new fluoride shuttle battery electrode material.•Bi0.8Ba0.2F2.8 decomposes into metallic Bi and BaF2 by defluorination.•Conversion reaction between Bi and BiF3 occurs in the subsequent cycles.•Cycle performance may be improved by suppression of coarsening of BiF3 particles. Fluoride shuttle batteries (FSBs), which utilize F– ion migration in electrochemical reactions, have recently advanced in academic research as next-generation rechargeable batteries. Bismuth trifluoride (BiF3) and its relatives are expected to be promising positive electrode materials for FSBs because of their high theoretical capacity. Herein, the defluorination/fluorination reaction of a BaF2-doped BiF3, Bi0.8Ba0.2F2.8, positive electrode was investigated using synchrotron-radiation X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy. The Bi0.8Ba0.2F2.8 electrode showed a higher reversible capacity in the first cycle and improved capacity retention compared to the BiF3 electrode. The pristine Bi0.8Ba0.2F2.8 showed a tysonite-type structure, and metallic Bi and BaF2 nanoparticles were observed in the fully defluorinated state. Moreover, we found that the (re-)fluorinated material consisted of BiF3 and BaF2 nanoparticles, indicating that bismuth is the only redox-active element, and that the tysonite structure is not recovered after the initial discharging. This suggests that the cycle performance of the Bi0.8Ba0.2F2.8 electrode may be improved due to the suppression of the coarsening of BiF3 nanoparticles by the adhesion of BaF2 nanoparticles formed after initial defluorination.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jelechem.2021.115508</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1572-6657
ispartof Journal of electroanalytical chemistry (Lausanne, Switzerland), 2021-08, Vol.895, p.115508, Article 115508
issn 1572-6657
1873-2569
language eng
recordid cdi_proquest_journals_2568030204
source ScienceDirect
subjects Barium fluorides
Batteries
Bismuth
Bismuth trifluoride
Chemical reactions
Defluorination
Electrode materials
Electrodes
Fluoride shuttle battery
Fluorides
Fluorination
Ion migration
Lithium
Nanoparticles
Rechargeable batteries
Synchrotrons
Tysonite
X ray absorption
title Defluorination/fluorination mechanism of Bi0.8Ba0.2F2.8 as a fluoride shuttle battery positive electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defluorination/fluorination%20mechanism%20of%20Bi0.8Ba0.2F2.8%20as%20a%20fluoride%20shuttle%20battery%20positive%20electrode&rft.jtitle=Journal%20of%20electroanalytical%20chemistry%20(Lausanne,%20Switzerland)&rft.au=Shimoda,%20Keiji&rft.date=2021-08-15&rft.volume=895&rft.spage=115508&rft.pages=115508-&rft.artnum=115508&rft.issn=1572-6657&rft.eissn=1873-2569&rft_id=info:doi/10.1016/j.jelechem.2021.115508&rft_dat=%3Cproquest_cross%3E2568030204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568030204&rft_id=info:pmid/&rft_els_id=S1572665721005348&rfr_iscdi=true