Node Importance Evaluation of Complex Network Based on M-TOPSIS Method

The importance evaluation of nodes in complex networks is of great significance. Usually, the importance evaluation of nodes can be based on degree centrality, closeness centrality, betweenness centrality, eigenvector centrality, and structural holes, etc. it is more reliable to evaluate the importa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-10, Vol.1325 (1), p.12016
Hauptverfasser: Luo, Laijun, Ren, Haiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12016
container_title Journal of physics. Conference series
container_volume 1325
creator Luo, Laijun
Ren, Haiping
description The importance evaluation of nodes in complex networks is of great significance. Usually, the importance evaluation of nodes can be based on degree centrality, closeness centrality, betweenness centrality, eigenvector centrality, and structural holes, etc. it is more reliable to evaluate the importance of the nodes with multiple indicators. Therefore, based on the principle of multiple attribute decision making (MADM), a new method for evaluating the importance of nodes based on M-TOPSIS is proposed in this paper, this method can be used to evaluate the nodes by using multiple indicators, and it can avoid the typical problems existing in the traditional method based on TOPSIS, such as the problem of inverted order of evaluation value. Experimental results show that the new method based on M-TOPSIS has good reliability and adaptability.
doi_str_mv 10.1088/1742-6596/1325/1/012016
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2568000490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568000490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2746-3d58de309a550e082f50a35bf32995458e40df7fe14d1b79075bf11f6d07e52b3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3Qu1J0jTppZZNJ_uCzeuQLQlubktNOz_-vS2ViSB4bs6B9znnwIPQJYEbAlLGRCQ0SnmWxoRRHpMYCAWSHqHOITk-zFKeorOyXAOwukQH9cfeWDzYFj5Uere0uPemN3tdrfwOe4dzvy029gOPbfXuwwu-06U1uM5G0XwynQ1meGSrZ2_O0YnTm9JefPcueur35vlDNJzcD_LbYbSkIkkjZrg0lkGmOQcLkjoOmvGFYzTLeMKlTcA44SxJDFmIDESdEeJSA8JyumBddNXeLYJ_3duyUmu_D7v6paI8lQCQZFBToqWWwZdlsE4VYbXV4VMRUI001ehQjRrVSFNEtdLqzet2c-WLn9OP03z2G1SFcTXM_oD_e_EFhP95UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568000490</pqid></control><display><type>article</type><title>Node Importance Evaluation of Complex Network Based on M-TOPSIS Method</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Luo, Laijun ; Ren, Haiping</creator><creatorcontrib>Luo, Laijun ; Ren, Haiping</creatorcontrib><description>The importance evaluation of nodes in complex networks is of great significance. Usually, the importance evaluation of nodes can be based on degree centrality, closeness centrality, betweenness centrality, eigenvector centrality, and structural holes, etc. it is more reliable to evaluate the importance of the nodes with multiple indicators. Therefore, based on the principle of multiple attribute decision making (MADM), a new method for evaluating the importance of nodes based on M-TOPSIS is proposed in this paper, this method can be used to evaluate the nodes by using multiple indicators, and it can avoid the typical problems existing in the traditional method based on TOPSIS, such as the problem of inverted order of evaluation value. Experimental results show that the new method based on M-TOPSIS has good reliability and adaptability.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1325/1/012016</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Decision making ; Eigenvectors ; Indicators ; Nodes ; Physics</subject><ispartof>Journal of physics. Conference series, 2019-10, Vol.1325 (1), p.12016</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2746-3d58de309a550e082f50a35bf32995458e40df7fe14d1b79075bf11f6d07e52b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1325/1/012016/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Luo, Laijun</creatorcontrib><creatorcontrib>Ren, Haiping</creatorcontrib><title>Node Importance Evaluation of Complex Network Based on M-TOPSIS Method</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The importance evaluation of nodes in complex networks is of great significance. Usually, the importance evaluation of nodes can be based on degree centrality, closeness centrality, betweenness centrality, eigenvector centrality, and structural holes, etc. it is more reliable to evaluate the importance of the nodes with multiple indicators. Therefore, based on the principle of multiple attribute decision making (MADM), a new method for evaluating the importance of nodes based on M-TOPSIS is proposed in this paper, this method can be used to evaluate the nodes by using multiple indicators, and it can avoid the typical problems existing in the traditional method based on TOPSIS, such as the problem of inverted order of evaluation value. Experimental results show that the new method based on M-TOPSIS has good reliability and adaptability.</description><subject>Decision making</subject><subject>Eigenvectors</subject><subject>Indicators</subject><subject>Nodes</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3Qu1J0jTppZZNJ_uCzeuQLQlubktNOz_-vS2ViSB4bs6B9znnwIPQJYEbAlLGRCQ0SnmWxoRRHpMYCAWSHqHOITk-zFKeorOyXAOwukQH9cfeWDzYFj5Uere0uPemN3tdrfwOe4dzvy029gOPbfXuwwu-06U1uM5G0XwynQ1meGSrZ2_O0YnTm9JefPcueur35vlDNJzcD_LbYbSkIkkjZrg0lkGmOQcLkjoOmvGFYzTLeMKlTcA44SxJDFmIDESdEeJSA8JyumBddNXeLYJ_3duyUmu_D7v6paI8lQCQZFBToqWWwZdlsE4VYbXV4VMRUI001ehQjRrVSFNEtdLqzet2c-WLn9OP03z2G1SFcTXM_oD_e_EFhP95UQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Luo, Laijun</creator><creator>Ren, Haiping</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20191001</creationdate><title>Node Importance Evaluation of Complex Network Based on M-TOPSIS Method</title><author>Luo, Laijun ; Ren, Haiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2746-3d58de309a550e082f50a35bf32995458e40df7fe14d1b79075bf11f6d07e52b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Decision making</topic><topic>Eigenvectors</topic><topic>Indicators</topic><topic>Nodes</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Laijun</creatorcontrib><creatorcontrib>Ren, Haiping</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Laijun</au><au>Ren, Haiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Node Importance Evaluation of Complex Network Based on M-TOPSIS Method</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>1325</volume><issue>1</issue><spage>12016</spage><pages>12016-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The importance evaluation of nodes in complex networks is of great significance. Usually, the importance evaluation of nodes can be based on degree centrality, closeness centrality, betweenness centrality, eigenvector centrality, and structural holes, etc. it is more reliable to evaluate the importance of the nodes with multiple indicators. Therefore, based on the principle of multiple attribute decision making (MADM), a new method for evaluating the importance of nodes based on M-TOPSIS is proposed in this paper, this method can be used to evaluate the nodes by using multiple indicators, and it can avoid the typical problems existing in the traditional method based on TOPSIS, such as the problem of inverted order of evaluation value. Experimental results show that the new method based on M-TOPSIS has good reliability and adaptability.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1325/1/012016</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2019-10, Vol.1325 (1), p.12016
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2568000490
source Institute of Physics IOPscience extra; IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Decision making
Eigenvectors
Indicators
Nodes
Physics
title Node Importance Evaluation of Complex Network Based on M-TOPSIS Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Node%20Importance%20Evaluation%20of%20Complex%20Network%20Based%20on%20M-TOPSIS%20Method&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Luo,%20Laijun&rft.date=2019-10-01&rft.volume=1325&rft.issue=1&rft.spage=12016&rft.pages=12016-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1325/1/012016&rft_dat=%3Cproquest_iop_j%3E2568000490%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568000490&rft_id=info:pmid/&rfr_iscdi=true