Using recommender systems to improve proactive modeling

This article investigates using recommender systems within graphical domain-specific modeling languages (DSMLs). The objective of using recommender systems within a graphical DSML is to overcome a shortcoming of proactive modeling where the modeler must inform the model intelligence engine how to pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Software and systems modeling 2021-08, Vol.20 (4), p.1159-1181
Hauptverfasser: Nair, Arvind, Ning, Xia, Hill, James H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1181
container_issue 4
container_start_page 1159
container_title Software and systems modeling
container_volume 20
creator Nair, Arvind
Ning, Xia
Hill, James H.
description This article investigates using recommender systems within graphical domain-specific modeling languages (DSMLs). The objective of using recommender systems within a graphical DSML is to overcome a shortcoming of proactive modeling where the modeler must inform the model intelligence engine how to progress when it cannot automatically determine the next modeling action to execute (e.g., add, delete, or edit). To evaluate our objective, we implemented a recommender system into the Proactive Modeling Engine, which is an add-on for the Generic Modeling Environment. We then conducted experiments to subjectively and objectively evaluate enhancements to the Proactive Modeling Engine. The results of our experiments show that extending proactive modeling with a recommender system results in an average reciprocal hit-rank of 0.871. Likewise, the enhancements yield a System Usability Scale rating of 77. Finally, user feedback shows that integrating recommender systems into DSMLs increases usability and learnability.
doi_str_mv 10.1007/s10270-020-00841-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2567803248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2567803248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c76aa1a05875ff8bae18606391038469d3f46fcf183dda49af63c313b202acbe3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz9GZJM3HUYofhYIXew7ZbFJWurs12Qr990ZX9OZhZt7D-8wMLyHXCLcIoO4yAlNAgZUCLZCyMzJDiYYiV-L8V0t5SRY5tzWAYMYIKWdEbXPb76oU_NB1oW9CqvIpj6HL1ThUbXdIw0eoSnd-bIvqhibsC3FFLqLb57D4mXOyfXx4XT3TzcvTenW_oZ6jGalX0jl0sNRqGaOuXUAtQXKDwLWQpuFRyOgjat40ThgXJS8krxkw5-vA5-Rm2lteeD-GPNq34Zj6ctKypVQaOBO6uNjk8mnIOYVoD6ntXDpZBPuVkZ0ysiUj-52RZQXiE5SLud-F9Lf6H-oTKohpFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2567803248</pqid></control><display><type>article</type><title>Using recommender systems to improve proactive modeling</title><source>SpringerLink_现刊</source><creator>Nair, Arvind ; Ning, Xia ; Hill, James H.</creator><creatorcontrib>Nair, Arvind ; Ning, Xia ; Hill, James H.</creatorcontrib><description>This article investigates using recommender systems within graphical domain-specific modeling languages (DSMLs). The objective of using recommender systems within a graphical DSML is to overcome a shortcoming of proactive modeling where the modeler must inform the model intelligence engine how to progress when it cannot automatically determine the next modeling action to execute (e.g., add, delete, or edit). To evaluate our objective, we implemented a recommender system into the Proactive Modeling Engine, which is an add-on for the Generic Modeling Environment. We then conducted experiments to subjectively and objectively evaluate enhancements to the Proactive Modeling Engine. The results of our experiments show that extending proactive modeling with a recommender system results in an average reciprocal hit-rank of 0.871. Likewise, the enhancements yield a System Usability Scale rating of 77. Finally, user feedback shows that integrating recommender systems into DSMLs increases usability and learnability.</description><identifier>ISSN: 1619-1366</identifier><identifier>EISSN: 1619-1374</identifier><identifier>DOI: 10.1007/s10270-020-00841-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Compilers ; Computer Science ; Environment models ; Information Systems Applications (incl.Internet) ; Interpreters ; IT in Business ; Programming Languages ; Programming Techniques ; Recommender systems ; Regular Paper ; Software Engineering ; Software Engineering/Programming and Operating Systems ; Usability</subject><ispartof>Software and systems modeling, 2021-08, Vol.20 (4), p.1159-1181</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c76aa1a05875ff8bae18606391038469d3f46fcf183dda49af63c313b202acbe3</citedby><cites>FETCH-LOGICAL-c319t-c76aa1a05875ff8bae18606391038469d3f46fcf183dda49af63c313b202acbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10270-020-00841-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10270-020-00841-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nair, Arvind</creatorcontrib><creatorcontrib>Ning, Xia</creatorcontrib><creatorcontrib>Hill, James H.</creatorcontrib><title>Using recommender systems to improve proactive modeling</title><title>Software and systems modeling</title><addtitle>Softw Syst Model</addtitle><description>This article investigates using recommender systems within graphical domain-specific modeling languages (DSMLs). The objective of using recommender systems within a graphical DSML is to overcome a shortcoming of proactive modeling where the modeler must inform the model intelligence engine how to progress when it cannot automatically determine the next modeling action to execute (e.g., add, delete, or edit). To evaluate our objective, we implemented a recommender system into the Proactive Modeling Engine, which is an add-on for the Generic Modeling Environment. We then conducted experiments to subjectively and objectively evaluate enhancements to the Proactive Modeling Engine. The results of our experiments show that extending proactive modeling with a recommender system results in an average reciprocal hit-rank of 0.871. Likewise, the enhancements yield a System Usability Scale rating of 77. Finally, user feedback shows that integrating recommender systems into DSMLs increases usability and learnability.</description><subject>Compilers</subject><subject>Computer Science</subject><subject>Environment models</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Interpreters</subject><subject>IT in Business</subject><subject>Programming Languages</subject><subject>Programming Techniques</subject><subject>Recommender systems</subject><subject>Regular Paper</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Usability</subject><issn>1619-1366</issn><issn>1619-1374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz9GZJM3HUYofhYIXew7ZbFJWurs12Qr990ZX9OZhZt7D-8wMLyHXCLcIoO4yAlNAgZUCLZCyMzJDiYYiV-L8V0t5SRY5tzWAYMYIKWdEbXPb76oU_NB1oW9CqvIpj6HL1ThUbXdIw0eoSnd-bIvqhibsC3FFLqLb57D4mXOyfXx4XT3TzcvTenW_oZ6jGalX0jl0sNRqGaOuXUAtQXKDwLWQpuFRyOgjat40ThgXJS8krxkw5-vA5-Rm2lteeD-GPNq34Zj6ctKypVQaOBO6uNjk8mnIOYVoD6ntXDpZBPuVkZ0ysiUj-52RZQXiE5SLud-F9Lf6H-oTKohpFQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Nair, Arvind</creator><creator>Ning, Xia</creator><creator>Hill, James H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20210801</creationdate><title>Using recommender systems to improve proactive modeling</title><author>Nair, Arvind ; Ning, Xia ; Hill, James H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c76aa1a05875ff8bae18606391038469d3f46fcf183dda49af63c313b202acbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compilers</topic><topic>Computer Science</topic><topic>Environment models</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Interpreters</topic><topic>IT in Business</topic><topic>Programming Languages</topic><topic>Programming Techniques</topic><topic>Recommender systems</topic><topic>Regular Paper</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Usability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Arvind</creatorcontrib><creatorcontrib>Ning, Xia</creatorcontrib><creatorcontrib>Hill, James H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Software and systems modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, Arvind</au><au>Ning, Xia</au><au>Hill, James H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using recommender systems to improve proactive modeling</atitle><jtitle>Software and systems modeling</jtitle><stitle>Softw Syst Model</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>20</volume><issue>4</issue><spage>1159</spage><epage>1181</epage><pages>1159-1181</pages><issn>1619-1366</issn><eissn>1619-1374</eissn><abstract>This article investigates using recommender systems within graphical domain-specific modeling languages (DSMLs). The objective of using recommender systems within a graphical DSML is to overcome a shortcoming of proactive modeling where the modeler must inform the model intelligence engine how to progress when it cannot automatically determine the next modeling action to execute (e.g., add, delete, or edit). To evaluate our objective, we implemented a recommender system into the Proactive Modeling Engine, which is an add-on for the Generic Modeling Environment. We then conducted experiments to subjectively and objectively evaluate enhancements to the Proactive Modeling Engine. The results of our experiments show that extending proactive modeling with a recommender system results in an average reciprocal hit-rank of 0.871. Likewise, the enhancements yield a System Usability Scale rating of 77. Finally, user feedback shows that integrating recommender systems into DSMLs increases usability and learnability.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10270-020-00841-2</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1619-1366
ispartof Software and systems modeling, 2021-08, Vol.20 (4), p.1159-1181
issn 1619-1366
1619-1374
language eng
recordid cdi_proquest_journals_2567803248
source SpringerLink_现刊
subjects Compilers
Computer Science
Environment models
Information Systems Applications (incl.Internet)
Interpreters
IT in Business
Programming Languages
Programming Techniques
Recommender systems
Regular Paper
Software Engineering
Software Engineering/Programming and Operating Systems
Usability
title Using recommender systems to improve proactive modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20recommender%20systems%20to%20improve%20proactive%20modeling&rft.jtitle=Software%20and%20systems%20modeling&rft.au=Nair,%20Arvind&rft.date=2021-08-01&rft.volume=20&rft.issue=4&rft.spage=1159&rft.epage=1181&rft.pages=1159-1181&rft.issn=1619-1366&rft.eissn=1619-1374&rft_id=info:doi/10.1007/s10270-020-00841-2&rft_dat=%3Cproquest_cross%3E2567803248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2567803248&rft_id=info:pmid/&rfr_iscdi=true