Design and fabrication of networks for bacterial computing
Non-deterministic polynomial (NP-) complete problems, whose number of possible solutions grows exponentially with the number of variables, require by necessity massively parallel computation. Because sequential computers, such as solid state-based ones, can solve only small instances of these proble...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2021-08, Vol.23 (8), p.85009 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 85009 |
container_title | New journal of physics |
container_volume | 23 |
creator | van Delft, Falco C M J M Sudalaiyadum Perumal, Ayyappasamy van Langen-Suurling, Anja de Boer, Charles Kašpar, Ondřej Tokárová, Viola Dirne, Frank W A Nicolau, Dan V |
description | Non-deterministic polynomial (NP-) complete problems, whose number of possible solutions grows exponentially with the number of variables, require by necessity massively parallel computation. Because sequential computers, such as solid state-based ones, can solve only small instances of these problems within a reasonable time frame, parallel computation using motile biological agents in nano- and micro-scale networks has been proposed as an alternative computational paradigm. Previous work demonstrated that protein molecular motors-driven cytoskeletal filaments are able to solve a small instance of an NP complete problem, i.e. the subset sum problem, embedded in a network. Autonomously moving bacteria are interesting alternatives to these motor driven filaments for solving such problems, because they are easier to operate with, and have the possible advantage of biological cell division. Before scaling up to large computational networks, bacterial motility behaviour in various geometrical structures has to be characterised, the stochastic traffic splitting in the junctions of computation devices has to be optimized, and the computational error rates have to be minimized. In this work, test structures and junctions have been designed, fabricated, tested, and optimized, leading to specific design rules and fabrication flowcharts, resulting in correctly functioning bio-computation networks. |
doi_str_mv | 10.1088/1367-2630/ac1d38 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2566509199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c511ee825c374aa1ad3ded968b1b40e3</doaj_id><sourcerecordid>2566509199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-8d841a04655bd14ad665736a2c42a18d42aaba74f21ee9485253800bf14ae0b83</originalsourceid><addsrcrecordid>eNp9kMtLw0AQh4MoWB93jwEPXozdZ7LxJvVVKHjR8zL7KhvbbNxNEf97UyPVg3iZHYZvvh1-WXaG0RVGQkwxLauClBRNQWNDxV422Y32f_WH2VFKDUIYC0Im2fWtTX7Z5tCa3IGKXkPvQ5sHl7e2fw_xNeUuxFyB7m30sMp1WHeb3rfLk-zAwSrZ0-_3OHu5v3uePRaLp4f57GZRaMZEXwgjGAbESs6VwQxMWfKKlkA0I4CFGSooqJgj2NqaCU44FQgpN7AWKUGPs_noNQEa2UW_hvghA3j5NQhxKSH2Xq-s1BwPEkG4phUDwGCosaYuhcKKIUsH1_no6mJ429jUyyZsYjucLwkfDkM1ruuBQiOlY0gpWrf7FSO5TVtu45TbOOWY9rByOa740P04_8Ev_sDbppOESiGR4AjVsjOOfgIfOIwc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566509199</pqid></control><display><type>article</type><title>Design and fabrication of networks for bacterial computing</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>van Delft, Falco C M J M ; Sudalaiyadum Perumal, Ayyappasamy ; van Langen-Suurling, Anja ; de Boer, Charles ; Kašpar, Ondřej ; Tokárová, Viola ; Dirne, Frank W A ; Nicolau, Dan V</creator><creatorcontrib>van Delft, Falco C M J M ; Sudalaiyadum Perumal, Ayyappasamy ; van Langen-Suurling, Anja ; de Boer, Charles ; Kašpar, Ondřej ; Tokárová, Viola ; Dirne, Frank W A ; Nicolau, Dan V</creatorcontrib><description>Non-deterministic polynomial (NP-) complete problems, whose number of possible solutions grows exponentially with the number of variables, require by necessity massively parallel computation. Because sequential computers, such as solid state-based ones, can solve only small instances of these problems within a reasonable time frame, parallel computation using motile biological agents in nano- and micro-scale networks has been proposed as an alternative computational paradigm. Previous work demonstrated that protein molecular motors-driven cytoskeletal filaments are able to solve a small instance of an NP complete problem, i.e. the subset sum problem, embedded in a network. Autonomously moving bacteria are interesting alternatives to these motor driven filaments for solving such problems, because they are easier to operate with, and have the possible advantage of biological cell division. Before scaling up to large computational networks, bacterial motility behaviour in various geometrical structures has to be characterised, the stochastic traffic splitting in the junctions of computation devices has to be optimized, and the computational error rates have to be minimized. In this work, test structures and junctions have been designed, fabricated, tested, and optimized, leading to specific design rules and fabrication flowcharts, resulting in correctly functioning bio-computation networks.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ac1d38</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Bacteria ; biocomputation ; Biological computing ; Cell division ; Design optimization ; e-beam lithography ; E. coli ; Filaments ; microfluidics ; Molecular motors ; motile bacteria ; nanofabrication ; Networks ; Parallel processing ; Physics ; Polynomials ; Sequential computers ; Set theory</subject><ispartof>New journal of physics, 2021-08, Vol.23 (8), p.85009</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-8d841a04655bd14ad665736a2c42a18d42aaba74f21ee9485253800bf14ae0b83</citedby><cites>FETCH-LOGICAL-c448t-8d841a04655bd14ad665736a2c42a18d42aaba74f21ee9485253800bf14ae0b83</cites><orcidid>0000-0002-3234-2211 ; 0000-0002-8740-415X ; 0000-0002-1360-9152 ; 0000-0002-9956-0600 ; 0000-0001-5353-6069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ac1d38/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>van Delft, Falco C M J M</creatorcontrib><creatorcontrib>Sudalaiyadum Perumal, Ayyappasamy</creatorcontrib><creatorcontrib>van Langen-Suurling, Anja</creatorcontrib><creatorcontrib>de Boer, Charles</creatorcontrib><creatorcontrib>Kašpar, Ondřej</creatorcontrib><creatorcontrib>Tokárová, Viola</creatorcontrib><creatorcontrib>Dirne, Frank W A</creatorcontrib><creatorcontrib>Nicolau, Dan V</creatorcontrib><title>Design and fabrication of networks for bacterial computing</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Non-deterministic polynomial (NP-) complete problems, whose number of possible solutions grows exponentially with the number of variables, require by necessity massively parallel computation. Because sequential computers, such as solid state-based ones, can solve only small instances of these problems within a reasonable time frame, parallel computation using motile biological agents in nano- and micro-scale networks has been proposed as an alternative computational paradigm. Previous work demonstrated that protein molecular motors-driven cytoskeletal filaments are able to solve a small instance of an NP complete problem, i.e. the subset sum problem, embedded in a network. Autonomously moving bacteria are interesting alternatives to these motor driven filaments for solving such problems, because they are easier to operate with, and have the possible advantage of biological cell division. Before scaling up to large computational networks, bacterial motility behaviour in various geometrical structures has to be characterised, the stochastic traffic splitting in the junctions of computation devices has to be optimized, and the computational error rates have to be minimized. In this work, test structures and junctions have been designed, fabricated, tested, and optimized, leading to specific design rules and fabrication flowcharts, resulting in correctly functioning bio-computation networks.</description><subject>Bacteria</subject><subject>biocomputation</subject><subject>Biological computing</subject><subject>Cell division</subject><subject>Design optimization</subject><subject>e-beam lithography</subject><subject>E. coli</subject><subject>Filaments</subject><subject>microfluidics</subject><subject>Molecular motors</subject><subject>motile bacteria</subject><subject>nanofabrication</subject><subject>Networks</subject><subject>Parallel processing</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Sequential computers</subject><subject>Set theory</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9kMtLw0AQh4MoWB93jwEPXozdZ7LxJvVVKHjR8zL7KhvbbNxNEf97UyPVg3iZHYZvvh1-WXaG0RVGQkwxLauClBRNQWNDxV422Y32f_WH2VFKDUIYC0Im2fWtTX7Z5tCa3IGKXkPvQ5sHl7e2fw_xNeUuxFyB7m30sMp1WHeb3rfLk-zAwSrZ0-_3OHu5v3uePRaLp4f57GZRaMZEXwgjGAbESs6VwQxMWfKKlkA0I4CFGSooqJgj2NqaCU44FQgpN7AWKUGPs_noNQEa2UW_hvghA3j5NQhxKSH2Xq-s1BwPEkG4phUDwGCosaYuhcKKIUsH1_no6mJ429jUyyZsYjucLwkfDkM1ruuBQiOlY0gpWrf7FSO5TVtu45TbOOWY9rByOa740P04_8Ev_sDbppOESiGR4AjVsjOOfgIfOIwc</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>van Delft, Falco C M J M</creator><creator>Sudalaiyadum Perumal, Ayyappasamy</creator><creator>van Langen-Suurling, Anja</creator><creator>de Boer, Charles</creator><creator>Kašpar, Ondřej</creator><creator>Tokárová, Viola</creator><creator>Dirne, Frank W A</creator><creator>Nicolau, Dan V</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3234-2211</orcidid><orcidid>https://orcid.org/0000-0002-8740-415X</orcidid><orcidid>https://orcid.org/0000-0002-1360-9152</orcidid><orcidid>https://orcid.org/0000-0002-9956-0600</orcidid><orcidid>https://orcid.org/0000-0001-5353-6069</orcidid></search><sort><creationdate>20210801</creationdate><title>Design and fabrication of networks for bacterial computing</title><author>van Delft, Falco C M J M ; Sudalaiyadum Perumal, Ayyappasamy ; van Langen-Suurling, Anja ; de Boer, Charles ; Kašpar, Ondřej ; Tokárová, Viola ; Dirne, Frank W A ; Nicolau, Dan V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-8d841a04655bd14ad665736a2c42a18d42aaba74f21ee9485253800bf14ae0b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bacteria</topic><topic>biocomputation</topic><topic>Biological computing</topic><topic>Cell division</topic><topic>Design optimization</topic><topic>e-beam lithography</topic><topic>E. coli</topic><topic>Filaments</topic><topic>microfluidics</topic><topic>Molecular motors</topic><topic>motile bacteria</topic><topic>nanofabrication</topic><topic>Networks</topic><topic>Parallel processing</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Sequential computers</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Delft, Falco C M J M</creatorcontrib><creatorcontrib>Sudalaiyadum Perumal, Ayyappasamy</creatorcontrib><creatorcontrib>van Langen-Suurling, Anja</creatorcontrib><creatorcontrib>de Boer, Charles</creatorcontrib><creatorcontrib>Kašpar, Ondřej</creatorcontrib><creatorcontrib>Tokárová, Viola</creatorcontrib><creatorcontrib>Dirne, Frank W A</creatorcontrib><creatorcontrib>Nicolau, Dan V</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Delft, Falco C M J M</au><au>Sudalaiyadum Perumal, Ayyappasamy</au><au>van Langen-Suurling, Anja</au><au>de Boer, Charles</au><au>Kašpar, Ondřej</au><au>Tokárová, Viola</au><au>Dirne, Frank W A</au><au>Nicolau, Dan V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and fabrication of networks for bacterial computing</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>23</volume><issue>8</issue><spage>85009</spage><pages>85009-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Non-deterministic polynomial (NP-) complete problems, whose number of possible solutions grows exponentially with the number of variables, require by necessity massively parallel computation. Because sequential computers, such as solid state-based ones, can solve only small instances of these problems within a reasonable time frame, parallel computation using motile biological agents in nano- and micro-scale networks has been proposed as an alternative computational paradigm. Previous work demonstrated that protein molecular motors-driven cytoskeletal filaments are able to solve a small instance of an NP complete problem, i.e. the subset sum problem, embedded in a network. Autonomously moving bacteria are interesting alternatives to these motor driven filaments for solving such problems, because they are easier to operate with, and have the possible advantage of biological cell division. Before scaling up to large computational networks, bacterial motility behaviour in various geometrical structures has to be characterised, the stochastic traffic splitting in the junctions of computation devices has to be optimized, and the computational error rates have to be minimized. In this work, test structures and junctions have been designed, fabricated, tested, and optimized, leading to specific design rules and fabrication flowcharts, resulting in correctly functioning bio-computation networks.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ac1d38</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3234-2211</orcidid><orcidid>https://orcid.org/0000-0002-8740-415X</orcidid><orcidid>https://orcid.org/0000-0002-1360-9152</orcidid><orcidid>https://orcid.org/0000-0002-9956-0600</orcidid><orcidid>https://orcid.org/0000-0001-5353-6069</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2021-08, Vol.23 (8), p.85009 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_proquest_journals_2566509199 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacteria biocomputation Biological computing Cell division Design optimization e-beam lithography E. coli Filaments microfluidics Molecular motors motile bacteria nanofabrication Networks Parallel processing Physics Polynomials Sequential computers Set theory |
title | Design and fabrication of networks for bacterial computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20fabrication%20of%20networks%20for%20bacterial%20computing&rft.jtitle=New%20journal%20of%20physics&rft.au=van%20Delft,%20Falco%20C%20M%20J%20M&rft.date=2021-08-01&rft.volume=23&rft.issue=8&rft.spage=85009&rft.pages=85009-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ac1d38&rft_dat=%3Cproquest_iop_j%3E2566509199%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566509199&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_c511ee825c374aa1ad3ded968b1b40e3&rfr_iscdi=true |