Image Recognition and Early Warning System of Urban Waterlogging Based on Tensorflow

In recent years, heavy rainfall caused by low-lying roads, under-worn overpasses and tunnels to produce a large amount of water phenomenon occurs from time to time, to people’s travel brought great inconvenience, serious even will cause people’s lives, property and major losses. With the rapid devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-08, Vol.1992 (2), p.22055
1. Verfasser: Feng, Xiangsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 22055
container_title Journal of physics. Conference series
container_volume 1992
creator Feng, Xiangsheng
description In recent years, heavy rainfall caused by low-lying roads, under-worn overpasses and tunnels to produce a large amount of water phenomenon occurs from time to time, to people’s travel brought great inconvenience, serious even will cause people’s lives, property and major losses. With the rapid development ofIo T technology and 5G, smart street light poles have become a hub for urban data transmission due to their wide range and integrated functions such as lighting control, environmental monitoring, 5G micro-base stations and meteorological monitoring. Therefore, with the powerful function of smart street light pole, the whole process of rain and sewage supervision can be realized in urban areas. Water conservancy departments can use the system as a whole to grasp the flood situation in the entire urban area, timely drainage scheduling, and can use TensorFlow’s original facilities to achieve early warning information LED screen display, video surveillance, sound column alarm and other functions to remind pedestrians to pay attention to safety.
doi_str_mv 10.1088/1742-6596/1992/2/022055
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2566502724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566502724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3285-cc9770ad41b6a68948a9151418c32ab55118c72efc20e60dbe2d783cb62ee1353</originalsourceid><addsrcrecordid>eNqFkFtLwzAYhoMoOKe_wYB3Qm2SNode6vAwGShuw8uQtmnp6JKadMj-vSmViSCYm3zkfZ8v8ABwidENRkLEmKckYjRjMc4yEpMYEYIoPQKTQ3J8mIU4BWfebxBKwuETsJpvVa3hmy5sbZq-sQYqU8J75do9fFfONKaGy73v9RbaCq5drkx477VrbV0P4Z3yuoSBW2njrata-3kOTirVen3xfU_B-uF-NXuKFi-P89ntIioSImhUFBnnSJUpzpliIkuFyjDFKRYhVzmlOEyc6KogSDNU5pqUXCRFzojWOKHJFFyNeztnP3ba93Jjd86ELyWhjFFEOElDi4-twlnvna5k55qtcnuJkRwUykGOHETJQaEkclQYyGQkG9v9rP6fuv6Den6dLX8XZVdWyRf5x3_W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566502724</pqid></control><display><type>article</type><title>Image Recognition and Early Warning System of Urban Waterlogging Based on Tensorflow</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Feng, Xiangsheng</creator><creatorcontrib>Feng, Xiangsheng</creatorcontrib><description>In recent years, heavy rainfall caused by low-lying roads, under-worn overpasses and tunnels to produce a large amount of water phenomenon occurs from time to time, to people’s travel brought great inconvenience, serious even will cause people’s lives, property and major losses. With the rapid development ofIo T technology and 5G, smart street light poles have become a hub for urban data transmission due to their wide range and integrated functions such as lighting control, environmental monitoring, 5G micro-base stations and meteorological monitoring. Therefore, with the powerful function of smart street light pole, the whole process of rain and sewage supervision can be realized in urban areas. Water conservancy departments can use the system as a whole to grasp the flood situation in the entire urban area, timely drainage scheduling, and can use TensorFlow’s original facilities to achieve early warning information LED screen display, video surveillance, sound column alarm and other functions to remind pedestrians to pay attention to safety.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1992/2/022055</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Data transmission ; Early warning systems ; Environmental monitoring ; Flooding ; Light emitting diodes ; Moisture content ; Object recognition ; Pedestrians ; Rainfall ; System ; Tensorflow ; Urban areas ; Utility poles ; Water conservation</subject><ispartof>Journal of physics. Conference series, 2021-08, Vol.1992 (2), p.22055</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3285-cc9770ad41b6a68948a9151418c32ab55118c72efc20e60dbe2d783cb62ee1353</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1992/2/022055/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Feng, Xiangsheng</creatorcontrib><title>Image Recognition and Early Warning System of Urban Waterlogging Based on Tensorflow</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In recent years, heavy rainfall caused by low-lying roads, under-worn overpasses and tunnels to produce a large amount of water phenomenon occurs from time to time, to people’s travel brought great inconvenience, serious even will cause people’s lives, property and major losses. With the rapid development ofIo T technology and 5G, smart street light poles have become a hub for urban data transmission due to their wide range and integrated functions such as lighting control, environmental monitoring, 5G micro-base stations and meteorological monitoring. Therefore, with the powerful function of smart street light pole, the whole process of rain and sewage supervision can be realized in urban areas. Water conservancy departments can use the system as a whole to grasp the flood situation in the entire urban area, timely drainage scheduling, and can use TensorFlow’s original facilities to achieve early warning information LED screen display, video surveillance, sound column alarm and other functions to remind pedestrians to pay attention to safety.</description><subject>Data transmission</subject><subject>Early warning systems</subject><subject>Environmental monitoring</subject><subject>Flooding</subject><subject>Light emitting diodes</subject><subject>Moisture content</subject><subject>Object recognition</subject><subject>Pedestrians</subject><subject>Rainfall</subject><subject>System</subject><subject>Tensorflow</subject><subject>Urban areas</subject><subject>Utility poles</subject><subject>Water conservation</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLwzAYhoMoOKe_wYB3Qm2SNode6vAwGShuw8uQtmnp6JKadMj-vSmViSCYm3zkfZ8v8ABwidENRkLEmKckYjRjMc4yEpMYEYIoPQKTQ3J8mIU4BWfebxBKwuETsJpvVa3hmy5sbZq-sQYqU8J75do9fFfONKaGy73v9RbaCq5drkx477VrbV0P4Z3yuoSBW2njrata-3kOTirVen3xfU_B-uF-NXuKFi-P89ntIioSImhUFBnnSJUpzpliIkuFyjDFKRYhVzmlOEyc6KogSDNU5pqUXCRFzojWOKHJFFyNeztnP3ba93Jjd86ELyWhjFFEOElDi4-twlnvna5k55qtcnuJkRwUykGOHETJQaEkclQYyGQkG9v9rP6fuv6Den6dLX8XZVdWyRf5x3_W</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Feng, Xiangsheng</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210801</creationdate><title>Image Recognition and Early Warning System of Urban Waterlogging Based on Tensorflow</title><author>Feng, Xiangsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3285-cc9770ad41b6a68948a9151418c32ab55118c72efc20e60dbe2d783cb62ee1353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data transmission</topic><topic>Early warning systems</topic><topic>Environmental monitoring</topic><topic>Flooding</topic><topic>Light emitting diodes</topic><topic>Moisture content</topic><topic>Object recognition</topic><topic>Pedestrians</topic><topic>Rainfall</topic><topic>System</topic><topic>Tensorflow</topic><topic>Urban areas</topic><topic>Utility poles</topic><topic>Water conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xiangsheng</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Xiangsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Recognition and Early Warning System of Urban Waterlogging Based on Tensorflow</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>1992</volume><issue>2</issue><spage>22055</spage><pages>22055-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In recent years, heavy rainfall caused by low-lying roads, under-worn overpasses and tunnels to produce a large amount of water phenomenon occurs from time to time, to people’s travel brought great inconvenience, serious even will cause people’s lives, property and major losses. With the rapid development ofIo T technology and 5G, smart street light poles have become a hub for urban data transmission due to their wide range and integrated functions such as lighting control, environmental monitoring, 5G micro-base stations and meteorological monitoring. Therefore, with the powerful function of smart street light pole, the whole process of rain and sewage supervision can be realized in urban areas. Water conservancy departments can use the system as a whole to grasp the flood situation in the entire urban area, timely drainage scheduling, and can use TensorFlow’s original facilities to achieve early warning information LED screen display, video surveillance, sound column alarm and other functions to remind pedestrians to pay attention to safety.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1992/2/022055</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-08, Vol.1992 (2), p.22055
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2566502724
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Data transmission
Early warning systems
Environmental monitoring
Flooding
Light emitting diodes
Moisture content
Object recognition
Pedestrians
Rainfall
System
Tensorflow
Urban areas
Utility poles
Water conservation
title Image Recognition and Early Warning System of Urban Waterlogging Based on Tensorflow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Recognition%20and%20Early%20Warning%20System%20of%20Urban%20Waterlogging%20Based%20on%20Tensorflow&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Feng,%20Xiangsheng&rft.date=2021-08-01&rft.volume=1992&rft.issue=2&rft.spage=22055&rft.pages=22055-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1992/2/022055&rft_dat=%3Cproquest_iop_j%3E2566502724%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566502724&rft_id=info:pmid/&rfr_iscdi=true