Image Recognition and Early Warning System of Urban Waterlogging Based on Tensorflow
In recent years, heavy rainfall caused by low-lying roads, under-worn overpasses and tunnels to produce a large amount of water phenomenon occurs from time to time, to people’s travel brought great inconvenience, serious even will cause people’s lives, property and major losses. With the rapid devel...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-08, Vol.1992 (2), p.22055 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 22055 |
container_title | Journal of physics. Conference series |
container_volume | 1992 |
creator | Feng, Xiangsheng |
description | In recent years, heavy rainfall caused by low-lying roads, under-worn overpasses and tunnels to produce a large amount of water phenomenon occurs from time to time, to people’s travel brought great inconvenience, serious even will cause people’s lives, property and major losses. With the rapid development ofIo T technology and 5G, smart street light poles have become a hub for urban data transmission due to their wide range and integrated functions such as lighting control, environmental monitoring, 5G micro-base stations and meteorological monitoring. Therefore, with the powerful function of smart street light pole, the whole process of rain and sewage supervision can be realized in urban areas. Water conservancy departments can use the system as a whole to grasp the flood situation in the entire urban area, timely drainage scheduling, and can use TensorFlow’s original facilities to achieve early warning information LED screen display, video surveillance, sound column alarm and other functions to remind pedestrians to pay attention to safety. |
doi_str_mv | 10.1088/1742-6596/1992/2/022055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2566502724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566502724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3285-cc9770ad41b6a68948a9151418c32ab55118c72efc20e60dbe2d783cb62ee1353</originalsourceid><addsrcrecordid>eNqFkFtLwzAYhoMoOKe_wYB3Qm2SNode6vAwGShuw8uQtmnp6JKadMj-vSmViSCYm3zkfZ8v8ABwidENRkLEmKckYjRjMc4yEpMYEYIoPQKTQ3J8mIU4BWfebxBKwuETsJpvVa3hmy5sbZq-sQYqU8J75do9fFfONKaGy73v9RbaCq5drkx477VrbV0P4Z3yuoSBW2njrata-3kOTirVen3xfU_B-uF-NXuKFi-P89ntIioSImhUFBnnSJUpzpliIkuFyjDFKRYhVzmlOEyc6KogSDNU5pqUXCRFzojWOKHJFFyNeztnP3ba93Jjd86ELyWhjFFEOElDi4-twlnvna5k55qtcnuJkRwUykGOHETJQaEkclQYyGQkG9v9rP6fuv6Den6dLX8XZVdWyRf5x3_W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566502724</pqid></control><display><type>article</type><title>Image Recognition and Early Warning System of Urban Waterlogging Based on Tensorflow</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Feng, Xiangsheng</creator><creatorcontrib>Feng, Xiangsheng</creatorcontrib><description>In recent years, heavy rainfall caused by low-lying roads, under-worn overpasses and tunnels to produce a large amount of water phenomenon occurs from time to time, to people’s travel brought great inconvenience, serious even will cause people’s lives, property and major losses. With the rapid development ofIo T technology and 5G, smart street light poles have become a hub for urban data transmission due to their wide range and integrated functions such as lighting control, environmental monitoring, 5G micro-base stations and meteorological monitoring. Therefore, with the powerful function of smart street light pole, the whole process of rain and sewage supervision can be realized in urban areas. Water conservancy departments can use the system as a whole to grasp the flood situation in the entire urban area, timely drainage scheduling, and can use TensorFlow’s original facilities to achieve early warning information LED screen display, video surveillance, sound column alarm and other functions to remind pedestrians to pay attention to safety.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1992/2/022055</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Data transmission ; Early warning systems ; Environmental monitoring ; Flooding ; Light emitting diodes ; Moisture content ; Object recognition ; Pedestrians ; Rainfall ; System ; Tensorflow ; Urban areas ; Utility poles ; Water conservation</subject><ispartof>Journal of physics. Conference series, 2021-08, Vol.1992 (2), p.22055</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3285-cc9770ad41b6a68948a9151418c32ab55118c72efc20e60dbe2d783cb62ee1353</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1992/2/022055/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Feng, Xiangsheng</creatorcontrib><title>Image Recognition and Early Warning System of Urban Waterlogging Based on Tensorflow</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In recent years, heavy rainfall caused by low-lying roads, under-worn overpasses and tunnels to produce a large amount of water phenomenon occurs from time to time, to people’s travel brought great inconvenience, serious even will cause people’s lives, property and major losses. With the rapid development ofIo T technology and 5G, smart street light poles have become a hub for urban data transmission due to their wide range and integrated functions such as lighting control, environmental monitoring, 5G micro-base stations and meteorological monitoring. Therefore, with the powerful function of smart street light pole, the whole process of rain and sewage supervision can be realized in urban areas. Water conservancy departments can use the system as a whole to grasp the flood situation in the entire urban area, timely drainage scheduling, and can use TensorFlow’s original facilities to achieve early warning information LED screen display, video surveillance, sound column alarm and other functions to remind pedestrians to pay attention to safety.</description><subject>Data transmission</subject><subject>Early warning systems</subject><subject>Environmental monitoring</subject><subject>Flooding</subject><subject>Light emitting diodes</subject><subject>Moisture content</subject><subject>Object recognition</subject><subject>Pedestrians</subject><subject>Rainfall</subject><subject>System</subject><subject>Tensorflow</subject><subject>Urban areas</subject><subject>Utility poles</subject><subject>Water conservation</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLwzAYhoMoOKe_wYB3Qm2SNode6vAwGShuw8uQtmnp6JKadMj-vSmViSCYm3zkfZ8v8ABwidENRkLEmKckYjRjMc4yEpMYEYIoPQKTQ3J8mIU4BWfebxBKwuETsJpvVa3hmy5sbZq-sQYqU8J75do9fFfONKaGy73v9RbaCq5drkx477VrbV0P4Z3yuoSBW2njrata-3kOTirVen3xfU_B-uF-NXuKFi-P89ntIioSImhUFBnnSJUpzpliIkuFyjDFKRYhVzmlOEyc6KogSDNU5pqUXCRFzojWOKHJFFyNeztnP3ba93Jjd86ELyWhjFFEOElDi4-twlnvna5k55qtcnuJkRwUykGOHETJQaEkclQYyGQkG9v9rP6fuv6Den6dLX8XZVdWyRf5x3_W</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Feng, Xiangsheng</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210801</creationdate><title>Image Recognition and Early Warning System of Urban Waterlogging Based on Tensorflow</title><author>Feng, Xiangsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3285-cc9770ad41b6a68948a9151418c32ab55118c72efc20e60dbe2d783cb62ee1353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data transmission</topic><topic>Early warning systems</topic><topic>Environmental monitoring</topic><topic>Flooding</topic><topic>Light emitting diodes</topic><topic>Moisture content</topic><topic>Object recognition</topic><topic>Pedestrians</topic><topic>Rainfall</topic><topic>System</topic><topic>Tensorflow</topic><topic>Urban areas</topic><topic>Utility poles</topic><topic>Water conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xiangsheng</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Xiangsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Recognition and Early Warning System of Urban Waterlogging Based on Tensorflow</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>1992</volume><issue>2</issue><spage>22055</spage><pages>22055-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In recent years, heavy rainfall caused by low-lying roads, under-worn overpasses and tunnels to produce a large amount of water phenomenon occurs from time to time, to people’s travel brought great inconvenience, serious even will cause people’s lives, property and major losses. With the rapid development ofIo T technology and 5G, smart street light poles have become a hub for urban data transmission due to their wide range and integrated functions such as lighting control, environmental monitoring, 5G micro-base stations and meteorological monitoring. Therefore, with the powerful function of smart street light pole, the whole process of rain and sewage supervision can be realized in urban areas. Water conservancy departments can use the system as a whole to grasp the flood situation in the entire urban area, timely drainage scheduling, and can use TensorFlow’s original facilities to achieve early warning information LED screen display, video surveillance, sound column alarm and other functions to remind pedestrians to pay attention to safety.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1992/2/022055</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-08, Vol.1992 (2), p.22055 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2566502724 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Data transmission Early warning systems Environmental monitoring Flooding Light emitting diodes Moisture content Object recognition Pedestrians Rainfall System Tensorflow Urban areas Utility poles Water conservation |
title | Image Recognition and Early Warning System of Urban Waterlogging Based on Tensorflow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Recognition%20and%20Early%20Warning%20System%20of%20Urban%20Waterlogging%20Based%20on%20Tensorflow&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Feng,%20Xiangsheng&rft.date=2021-08-01&rft.volume=1992&rft.issue=2&rft.spage=22055&rft.pages=22055-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1992/2/022055&rft_dat=%3Cproquest_iop_j%3E2566502724%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566502724&rft_id=info:pmid/&rfr_iscdi=true |