Business Anomaly Detection Based on QoS Benchmark of Resource-service Chain in Collaborative Task
To detect business anomaly caused by resource services in collaborative task, an approach based on QoS benchmark of resource-service chain is presented. Firstly, taking QoS of resource services as feature, the QoS benchmarks are obtained by clustering the relationships between the features of resour...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2019-06, Vol.1237 (2), p.22135 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 22135 |
container_title | Journal of physics. Conference series |
container_volume | 1237 |
creator | Li, Haibo Tong, Juncheng Zhang, Zheng Yu, Yongbo |
description | To detect business anomaly caused by resource services in collaborative task, an approach based on QoS benchmark of resource-service chain is presented. Firstly, taking QoS of resource services as feature, the QoS benchmarks are obtained by clustering the relationships between the features of resource services in resource service chains. Then, thresholds of QoS benchmarks are calculated. A dynamic calibration strategy to the threshold is used to perform online detection of business anomaly in global and local views of a collaborative task. Finally, experiments and case studies show that the proposed approach has a high accuracy rate for business anomaly detection. |
doi_str_mv | 10.1088/1742-6596/1237/2/022135 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2566217390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566217390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2745-4199dd6f15a5ea97b333a58dc5c9c42443227386801f7d561b8e77f139d88c063</originalsourceid><addsrcrecordid>eNqFkGtLwzAUhoMoOKe_wYDfhNpcmib9uNU7Ay-bn0OWpqxb18ykG-zfm1KZCIIhkAN53_ec8wBwidENRkLEmCckSlmWxphQHpMYEYIpOwKDw8_xoRbiFJx5v0SIhsMHQI23vmqM93DU2LWq9_DWtEa3lW3gWHlTwFC82Skcm0Yv1sqtoC3hu_F267SJvHG7ShuYL1TVwHBzW9dqbp1qq52BM-VX5-CkVLU3F9_vEHzc383yx2jy8vCUjyaRJjxhUYKzrCjSEjPFjMr4PMynmCg005lOSJJQQjgVqUC45AVL8VwYzktMs0IIjVI6BFd97sbZz63xrVyGGZvQUhKWpgRzmqGg4r1KO-u9M6XcuCqstZcYyY6n7EjJjprseEoie57BSXtnZTc_0f-7rv9wPb_m099CuSlK-gUGNIOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566217390</pqid></control><display><type>article</type><title>Business Anomaly Detection Based on QoS Benchmark of Resource-service Chain in Collaborative Task</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Haibo ; Tong, Juncheng ; Zhang, Zheng ; Yu, Yongbo</creator><creatorcontrib>Li, Haibo ; Tong, Juncheng ; Zhang, Zheng ; Yu, Yongbo</creatorcontrib><description>To detect business anomaly caused by resource services in collaborative task, an approach based on QoS benchmark of resource-service chain is presented. Firstly, taking QoS of resource services as feature, the QoS benchmarks are obtained by clustering the relationships between the features of resource services in resource service chains. Then, thresholds of QoS benchmarks are calculated. A dynamic calibration strategy to the threshold is used to perform online detection of business anomaly in global and local views of a collaborative task. Finally, experiments and case studies show that the proposed approach has a high accuracy rate for business anomaly detection.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1237/2/022135</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anomalies ; Benchmarks ; Chains ; Clustering ; Collaboration</subject><ispartof>Journal of physics. Conference series, 2019-06, Vol.1237 (2), p.22135</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2745-4199dd6f15a5ea97b333a58dc5c9c42443227386801f7d561b8e77f139d88c063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1237/2/022135/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Li, Haibo</creatorcontrib><creatorcontrib>Tong, Juncheng</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Yu, Yongbo</creatorcontrib><title>Business Anomaly Detection Based on QoS Benchmark of Resource-service Chain in Collaborative Task</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>To detect business anomaly caused by resource services in collaborative task, an approach based on QoS benchmark of resource-service chain is presented. Firstly, taking QoS of resource services as feature, the QoS benchmarks are obtained by clustering the relationships between the features of resource services in resource service chains. Then, thresholds of QoS benchmarks are calculated. A dynamic calibration strategy to the threshold is used to perform online detection of business anomaly in global and local views of a collaborative task. Finally, experiments and case studies show that the proposed approach has a high accuracy rate for business anomaly detection.</description><subject>Anomalies</subject><subject>Benchmarks</subject><subject>Chains</subject><subject>Clustering</subject><subject>Collaboration</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkGtLwzAUhoMoOKe_wYDfhNpcmib9uNU7Ay-bn0OWpqxb18ykG-zfm1KZCIIhkAN53_ec8wBwidENRkLEmCckSlmWxphQHpMYEYIpOwKDw8_xoRbiFJx5v0SIhsMHQI23vmqM93DU2LWq9_DWtEa3lW3gWHlTwFC82Skcm0Yv1sqtoC3hu_F267SJvHG7ShuYL1TVwHBzW9dqbp1qq52BM-VX5-CkVLU3F9_vEHzc383yx2jy8vCUjyaRJjxhUYKzrCjSEjPFjMr4PMynmCg005lOSJJQQjgVqUC45AVL8VwYzktMs0IIjVI6BFd97sbZz63xrVyGGZvQUhKWpgRzmqGg4r1KO-u9M6XcuCqstZcYyY6n7EjJjprseEoie57BSXtnZTc_0f-7rv9wPb_m099CuSlK-gUGNIOY</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Li, Haibo</creator><creator>Tong, Juncheng</creator><creator>Zhang, Zheng</creator><creator>Yu, Yongbo</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190601</creationdate><title>Business Anomaly Detection Based on QoS Benchmark of Resource-service Chain in Collaborative Task</title><author>Li, Haibo ; Tong, Juncheng ; Zhang, Zheng ; Yu, Yongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2745-4199dd6f15a5ea97b333a58dc5c9c42443227386801f7d561b8e77f139d88c063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anomalies</topic><topic>Benchmarks</topic><topic>Chains</topic><topic>Clustering</topic><topic>Collaboration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haibo</creatorcontrib><creatorcontrib>Tong, Juncheng</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Yu, Yongbo</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haibo</au><au>Tong, Juncheng</au><au>Zhang, Zheng</au><au>Yu, Yongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Business Anomaly Detection Based on QoS Benchmark of Resource-service Chain in Collaborative Task</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>1237</volume><issue>2</issue><spage>22135</spage><pages>22135-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>To detect business anomaly caused by resource services in collaborative task, an approach based on QoS benchmark of resource-service chain is presented. Firstly, taking QoS of resource services as feature, the QoS benchmarks are obtained by clustering the relationships between the features of resource services in resource service chains. Then, thresholds of QoS benchmarks are calculated. A dynamic calibration strategy to the threshold is used to perform online detection of business anomaly in global and local views of a collaborative task. Finally, experiments and case studies show that the proposed approach has a high accuracy rate for business anomaly detection.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1237/2/022135</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2019-06, Vol.1237 (2), p.22135 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2566217390 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Anomalies Benchmarks Chains Clustering Collaboration |
title | Business Anomaly Detection Based on QoS Benchmark of Resource-service Chain in Collaborative Task |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Business%20Anomaly%20Detection%20Based%20on%20QoS%20Benchmark%20of%20Resource-service%20Chain%20in%20Collaborative%20Task&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Li,%20Haibo&rft.date=2019-06-01&rft.volume=1237&rft.issue=2&rft.spage=22135&rft.pages=22135-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1237/2/022135&rft_dat=%3Cproquest_iop_j%3E2566217390%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566217390&rft_id=info:pmid/&rfr_iscdi=true |