Business Anomaly Detection Based on QoS Benchmark of Resource-service Chain in Collaborative Task

To detect business anomaly caused by resource services in collaborative task, an approach based on QoS benchmark of resource-service chain is presented. Firstly, taking QoS of resource services as feature, the QoS benchmarks are obtained by clustering the relationships between the features of resour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-06, Vol.1237 (2), p.22135
Hauptverfasser: Li, Haibo, Tong, Juncheng, Zhang, Zheng, Yu, Yongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 22135
container_title Journal of physics. Conference series
container_volume 1237
creator Li, Haibo
Tong, Juncheng
Zhang, Zheng
Yu, Yongbo
description To detect business anomaly caused by resource services in collaborative task, an approach based on QoS benchmark of resource-service chain is presented. Firstly, taking QoS of resource services as feature, the QoS benchmarks are obtained by clustering the relationships between the features of resource services in resource service chains. Then, thresholds of QoS benchmarks are calculated. A dynamic calibration strategy to the threshold is used to perform online detection of business anomaly in global and local views of a collaborative task. Finally, experiments and case studies show that the proposed approach has a high accuracy rate for business anomaly detection.
doi_str_mv 10.1088/1742-6596/1237/2/022135
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2566217390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566217390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2745-4199dd6f15a5ea97b333a58dc5c9c42443227386801f7d561b8e77f139d88c063</originalsourceid><addsrcrecordid>eNqFkGtLwzAUhoMoOKe_wYDfhNpcmib9uNU7Ay-bn0OWpqxb18ykG-zfm1KZCIIhkAN53_ec8wBwidENRkLEmCckSlmWxphQHpMYEYIpOwKDw8_xoRbiFJx5v0SIhsMHQI23vmqM93DU2LWq9_DWtEa3lW3gWHlTwFC82Skcm0Yv1sqtoC3hu_F267SJvHG7ShuYL1TVwHBzW9dqbp1qq52BM-VX5-CkVLU3F9_vEHzc383yx2jy8vCUjyaRJjxhUYKzrCjSEjPFjMr4PMynmCg005lOSJJQQjgVqUC45AVL8VwYzktMs0IIjVI6BFd97sbZz63xrVyGGZvQUhKWpgRzmqGg4r1KO-u9M6XcuCqstZcYyY6n7EjJjprseEoie57BSXtnZTc_0f-7rv9wPb_m099CuSlK-gUGNIOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566217390</pqid></control><display><type>article</type><title>Business Anomaly Detection Based on QoS Benchmark of Resource-service Chain in Collaborative Task</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Haibo ; Tong, Juncheng ; Zhang, Zheng ; Yu, Yongbo</creator><creatorcontrib>Li, Haibo ; Tong, Juncheng ; Zhang, Zheng ; Yu, Yongbo</creatorcontrib><description>To detect business anomaly caused by resource services in collaborative task, an approach based on QoS benchmark of resource-service chain is presented. Firstly, taking QoS of resource services as feature, the QoS benchmarks are obtained by clustering the relationships between the features of resource services in resource service chains. Then, thresholds of QoS benchmarks are calculated. A dynamic calibration strategy to the threshold is used to perform online detection of business anomaly in global and local views of a collaborative task. Finally, experiments and case studies show that the proposed approach has a high accuracy rate for business anomaly detection.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1237/2/022135</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anomalies ; Benchmarks ; Chains ; Clustering ; Collaboration</subject><ispartof>Journal of physics. Conference series, 2019-06, Vol.1237 (2), p.22135</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2745-4199dd6f15a5ea97b333a58dc5c9c42443227386801f7d561b8e77f139d88c063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1237/2/022135/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Li, Haibo</creatorcontrib><creatorcontrib>Tong, Juncheng</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Yu, Yongbo</creatorcontrib><title>Business Anomaly Detection Based on QoS Benchmark of Resource-service Chain in Collaborative Task</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>To detect business anomaly caused by resource services in collaborative task, an approach based on QoS benchmark of resource-service chain is presented. Firstly, taking QoS of resource services as feature, the QoS benchmarks are obtained by clustering the relationships between the features of resource services in resource service chains. Then, thresholds of QoS benchmarks are calculated. A dynamic calibration strategy to the threshold is used to perform online detection of business anomaly in global and local views of a collaborative task. Finally, experiments and case studies show that the proposed approach has a high accuracy rate for business anomaly detection.</description><subject>Anomalies</subject><subject>Benchmarks</subject><subject>Chains</subject><subject>Clustering</subject><subject>Collaboration</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkGtLwzAUhoMoOKe_wYDfhNpcmib9uNU7Ay-bn0OWpqxb18ykG-zfm1KZCIIhkAN53_ec8wBwidENRkLEmCckSlmWxphQHpMYEYIpOwKDw8_xoRbiFJx5v0SIhsMHQI23vmqM93DU2LWq9_DWtEa3lW3gWHlTwFC82Skcm0Yv1sqtoC3hu_F267SJvHG7ShuYL1TVwHBzW9dqbp1qq52BM-VX5-CkVLU3F9_vEHzc383yx2jy8vCUjyaRJjxhUYKzrCjSEjPFjMr4PMynmCg005lOSJJQQjgVqUC45AVL8VwYzktMs0IIjVI6BFd97sbZz63xrVyGGZvQUhKWpgRzmqGg4r1KO-u9M6XcuCqstZcYyY6n7EjJjprseEoie57BSXtnZTc_0f-7rv9wPb_m099CuSlK-gUGNIOY</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Li, Haibo</creator><creator>Tong, Juncheng</creator><creator>Zhang, Zheng</creator><creator>Yu, Yongbo</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190601</creationdate><title>Business Anomaly Detection Based on QoS Benchmark of Resource-service Chain in Collaborative Task</title><author>Li, Haibo ; Tong, Juncheng ; Zhang, Zheng ; Yu, Yongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2745-4199dd6f15a5ea97b333a58dc5c9c42443227386801f7d561b8e77f139d88c063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anomalies</topic><topic>Benchmarks</topic><topic>Chains</topic><topic>Clustering</topic><topic>Collaboration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haibo</creatorcontrib><creatorcontrib>Tong, Juncheng</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Yu, Yongbo</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haibo</au><au>Tong, Juncheng</au><au>Zhang, Zheng</au><au>Yu, Yongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Business Anomaly Detection Based on QoS Benchmark of Resource-service Chain in Collaborative Task</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>1237</volume><issue>2</issue><spage>22135</spage><pages>22135-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>To detect business anomaly caused by resource services in collaborative task, an approach based on QoS benchmark of resource-service chain is presented. Firstly, taking QoS of resource services as feature, the QoS benchmarks are obtained by clustering the relationships between the features of resource services in resource service chains. Then, thresholds of QoS benchmarks are calculated. A dynamic calibration strategy to the threshold is used to perform online detection of business anomaly in global and local views of a collaborative task. Finally, experiments and case studies show that the proposed approach has a high accuracy rate for business anomaly detection.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1237/2/022135</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2019-06, Vol.1237 (2), p.22135
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2566217390
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Anomalies
Benchmarks
Chains
Clustering
Collaboration
title Business Anomaly Detection Based on QoS Benchmark of Resource-service Chain in Collaborative Task
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Business%20Anomaly%20Detection%20Based%20on%20QoS%20Benchmark%20of%20Resource-service%20Chain%20in%20Collaborative%20Task&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Li,%20Haibo&rft.date=2019-06-01&rft.volume=1237&rft.issue=2&rft.spage=22135&rft.pages=22135-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1237/2/022135&rft_dat=%3Cproquest_iop_j%3E2566217390%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566217390&rft_id=info:pmid/&rfr_iscdi=true