Web-analogues one-dimensional iron hydroxide@cadmium hydroxide nanostructure: electrochemical supercapacitor
One-dimensional iron hydroxide@cadmium hydroxide nanostructures have been prepared by sequentially converting cadmium hydroxide into iron hydroxide via simple and cost-effective cation exchange reaction based on solubility product to design electrochemical supercapacitive electrode. Surface architec...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2021-09, Vol.32 (17), p.22472-22480 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22480 |
---|---|
container_issue | 17 |
container_start_page | 22472 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Patil, Savita Raut, Shrikant Pandit, Bidhan Pandey, S. N. Pande, Shilpa A. Sankapal, Babasaheb |
description | One-dimensional iron hydroxide@cadmium hydroxide nanostructures have been prepared by sequentially converting cadmium hydroxide into iron hydroxide via simple and cost-effective cation exchange reaction based on solubility product to design electrochemical supercapacitive electrode. Surface architecture of iron hydroxide@cadmium hydroxide nanostructures in the form of core–shell enables easy and effective electrochemical reactions which have been studied via electrochemical cyclic voltammetry and charge–discharge studies. Interestingly, iron hydroxide@cadmium hydroxide electrode exhibits specific capacitance of 368 F g
−1
at current density of 0.5 A g
−1
along with electrochemical impedance analysis. Capacitance retention performed at the scan rate of 50 mV s
−1
for 5000 cycles results in 52% capacity of its initial. |
doi_str_mv | 10.1007/s10854-021-06733-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2566149060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566149060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1f750e059c4d045eb79ef5c0e79383107a5b75575aa47392e162fe9bcd68eaf73</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcF19GXJmlaV8rgFwhuFN2FNH2dydA2NWnB-fdWK8zO1YPLPRfeIeScwSUDUFeRQS4FhZRRyBTnVB6QBZOKU5GnH4dkAYVUVMg0PSYnMW4BIBM8X5DmHUtqOtP49Ygx8R3SyrXYReenMHHBd8lmVwX_5Sq8saZq3djuk6QznY9DGO0wBrxOsEE7BG832Do78XHsMVjTG-sGH07JUW2aiGd_d0ne7u9eV4_0-eXhaXX7TC1nxUBZrSQgyMKKCoTEUhVYSwuoCp5zBsrIUkmppDFC8SJFlqU1FqWtshxNrfiSXMy7ffCf01uD3voxTP9EncosY6KADKZWOrds8DEGrHUfXGvCTjPQP1b1bFVPVvWvVS0niM9QnMrdGsN--h_qG8JEfV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566149060</pqid></control><display><type>article</type><title>Web-analogues one-dimensional iron hydroxide@cadmium hydroxide nanostructure: electrochemical supercapacitor</title><source>SpringerLink Journals - AutoHoldings</source><creator>Patil, Savita ; Raut, Shrikant ; Pandit, Bidhan ; Pandey, S. N. ; Pande, Shilpa A. ; Sankapal, Babasaheb</creator><creatorcontrib>Patil, Savita ; Raut, Shrikant ; Pandit, Bidhan ; Pandey, S. N. ; Pande, Shilpa A. ; Sankapal, Babasaheb</creatorcontrib><description>One-dimensional iron hydroxide@cadmium hydroxide nanostructures have been prepared by sequentially converting cadmium hydroxide into iron hydroxide via simple and cost-effective cation exchange reaction based on solubility product to design electrochemical supercapacitive electrode. Surface architecture of iron hydroxide@cadmium hydroxide nanostructures in the form of core–shell enables easy and effective electrochemical reactions which have been studied via electrochemical cyclic voltammetry and charge–discharge studies. Interestingly, iron hydroxide@cadmium hydroxide electrode exhibits specific capacitance of 368 F g
−1
at current density of 0.5 A g
−1
along with electrochemical impedance analysis. Capacitance retention performed at the scan rate of 50 mV s
−1
for 5000 cycles results in 52% capacity of its initial.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-06733-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cadmium ; Capacitance ; Cation exchanging ; Characterization and Evaluation of Materials ; Chemical reactions ; Chemistry and Materials Science ; Iron ; Materials Science ; Nanostructure ; Optical and Electronic Materials</subject><ispartof>Journal of materials science. Materials in electronics, 2021-09, Vol.32 (17), p.22472-22480</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1f750e059c4d045eb79ef5c0e79383107a5b75575aa47392e162fe9bcd68eaf73</citedby><cites>FETCH-LOGICAL-c319t-1f750e059c4d045eb79ef5c0e79383107a5b75575aa47392e162fe9bcd68eaf73</cites><orcidid>0000-0003-1562-5575 ; 0000-0003-4656-9289 ; 0000-0002-5166-5104 ; 0000-0001-6105-8191 ; 0000-0002-7464-9633 ; 0000-0003-0580-9995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-06733-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-06733-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Patil, Savita</creatorcontrib><creatorcontrib>Raut, Shrikant</creatorcontrib><creatorcontrib>Pandit, Bidhan</creatorcontrib><creatorcontrib>Pandey, S. N.</creatorcontrib><creatorcontrib>Pande, Shilpa A.</creatorcontrib><creatorcontrib>Sankapal, Babasaheb</creatorcontrib><title>Web-analogues one-dimensional iron hydroxide@cadmium hydroxide nanostructure: electrochemical supercapacitor</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>One-dimensional iron hydroxide@cadmium hydroxide nanostructures have been prepared by sequentially converting cadmium hydroxide into iron hydroxide via simple and cost-effective cation exchange reaction based on solubility product to design electrochemical supercapacitive electrode. Surface architecture of iron hydroxide@cadmium hydroxide nanostructures in the form of core–shell enables easy and effective electrochemical reactions which have been studied via electrochemical cyclic voltammetry and charge–discharge studies. Interestingly, iron hydroxide@cadmium hydroxide electrode exhibits specific capacitance of 368 F g
−1
at current density of 0.5 A g
−1
along with electrochemical impedance analysis. Capacitance retention performed at the scan rate of 50 mV s
−1
for 5000 cycles results in 52% capacity of its initial.</description><subject>Cadmium</subject><subject>Capacitance</subject><subject>Cation exchanging</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Iron</subject><subject>Materials Science</subject><subject>Nanostructure</subject><subject>Optical and Electronic Materials</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAURYMoOI7-AVcF19GXJmlaV8rgFwhuFN2FNH2dydA2NWnB-fdWK8zO1YPLPRfeIeScwSUDUFeRQS4FhZRRyBTnVB6QBZOKU5GnH4dkAYVUVMg0PSYnMW4BIBM8X5DmHUtqOtP49Ygx8R3SyrXYReenMHHBd8lmVwX_5Sq8saZq3djuk6QznY9DGO0wBrxOsEE7BG832Do78XHsMVjTG-sGH07JUW2aiGd_d0ne7u9eV4_0-eXhaXX7TC1nxUBZrSQgyMKKCoTEUhVYSwuoCp5zBsrIUkmppDFC8SJFlqU1FqWtshxNrfiSXMy7ffCf01uD3voxTP9EncosY6KADKZWOrds8DEGrHUfXGvCTjPQP1b1bFVPVvWvVS0niM9QnMrdGsN--h_qG8JEfV0</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Patil, Savita</creator><creator>Raut, Shrikant</creator><creator>Pandit, Bidhan</creator><creator>Pandey, S. N.</creator><creator>Pande, Shilpa A.</creator><creator>Sankapal, Babasaheb</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-1562-5575</orcidid><orcidid>https://orcid.org/0000-0003-4656-9289</orcidid><orcidid>https://orcid.org/0000-0002-5166-5104</orcidid><orcidid>https://orcid.org/0000-0001-6105-8191</orcidid><orcidid>https://orcid.org/0000-0002-7464-9633</orcidid><orcidid>https://orcid.org/0000-0003-0580-9995</orcidid></search><sort><creationdate>20210901</creationdate><title>Web-analogues one-dimensional iron hydroxide@cadmium hydroxide nanostructure: electrochemical supercapacitor</title><author>Patil, Savita ; Raut, Shrikant ; Pandit, Bidhan ; Pandey, S. N. ; Pande, Shilpa A. ; Sankapal, Babasaheb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1f750e059c4d045eb79ef5c0e79383107a5b75575aa47392e162fe9bcd68eaf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cadmium</topic><topic>Capacitance</topic><topic>Cation exchanging</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Iron</topic><topic>Materials Science</topic><topic>Nanostructure</topic><topic>Optical and Electronic Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patil, Savita</creatorcontrib><creatorcontrib>Raut, Shrikant</creatorcontrib><creatorcontrib>Pandit, Bidhan</creatorcontrib><creatorcontrib>Pandey, S. N.</creatorcontrib><creatorcontrib>Pande, Shilpa A.</creatorcontrib><creatorcontrib>Sankapal, Babasaheb</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patil, Savita</au><au>Raut, Shrikant</au><au>Pandit, Bidhan</au><au>Pandey, S. N.</au><au>Pande, Shilpa A.</au><au>Sankapal, Babasaheb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Web-analogues one-dimensional iron hydroxide@cadmium hydroxide nanostructure: electrochemical supercapacitor</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>32</volume><issue>17</issue><spage>22472</spage><epage>22480</epage><pages>22472-22480</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>One-dimensional iron hydroxide@cadmium hydroxide nanostructures have been prepared by sequentially converting cadmium hydroxide into iron hydroxide via simple and cost-effective cation exchange reaction based on solubility product to design electrochemical supercapacitive electrode. Surface architecture of iron hydroxide@cadmium hydroxide nanostructures in the form of core–shell enables easy and effective electrochemical reactions which have been studied via electrochemical cyclic voltammetry and charge–discharge studies. Interestingly, iron hydroxide@cadmium hydroxide electrode exhibits specific capacitance of 368 F g
−1
at current density of 0.5 A g
−1
along with electrochemical impedance analysis. Capacitance retention performed at the scan rate of 50 mV s
−1
for 5000 cycles results in 52% capacity of its initial.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-06733-5</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1562-5575</orcidid><orcidid>https://orcid.org/0000-0003-4656-9289</orcidid><orcidid>https://orcid.org/0000-0002-5166-5104</orcidid><orcidid>https://orcid.org/0000-0001-6105-8191</orcidid><orcidid>https://orcid.org/0000-0002-7464-9633</orcidid><orcidid>https://orcid.org/0000-0003-0580-9995</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-09, Vol.32 (17), p.22472-22480 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2566149060 |
source | SpringerLink Journals - AutoHoldings |
subjects | Cadmium Capacitance Cation exchanging Characterization and Evaluation of Materials Chemical reactions Chemistry and Materials Science Iron Materials Science Nanostructure Optical and Electronic Materials |
title | Web-analogues one-dimensional iron hydroxide@cadmium hydroxide nanostructure: electrochemical supercapacitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A28%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Web-analogues%20one-dimensional%20iron%20hydroxide@cadmium%20hydroxide%20nanostructure:%20electrochemical%20supercapacitor&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Patil,%20Savita&rft.date=2021-09-01&rft.volume=32&rft.issue=17&rft.spage=22472&rft.epage=22480&rft.pages=22472-22480&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-06733-5&rft_dat=%3Cproquest_cross%3E2566149060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566149060&rft_id=info:pmid/&rfr_iscdi=true |