TSK-Streams: learning TSK fuzzy systems for regression on data streams
The problem of adaptive learning from evolving and possibly non-stationary data streams has attracted a lot of interest in machine learning in the recent past, and also stimulated research in related fields, such as computational intelligence and fuzzy systems. In particular, several rule-based meth...
Gespeichert in:
Veröffentlicht in: | Data mining and knowledge discovery 2021-09, Vol.35 (5), p.1941-1971 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1971 |
---|---|
container_issue | 5 |
container_start_page | 1941 |
container_title | Data mining and knowledge discovery |
container_volume | 35 |
creator | Shaker, Ammar Hüllermeier, Eyke |
description | The problem of adaptive learning from evolving and possibly non-stationary data streams has attracted a lot of interest in machine learning in the recent past, and also stimulated research in related fields, such as computational intelligence and fuzzy systems. In particular, several rule-based methods for the incremental induction of regression models have been proposed. In this paper, we develop a method that combines the strengths of two existing approaches rooted in different learning paradigms. More concretely, our method adopts basic principles of the state-of-the-art learning algorithm AMRules and enriches them by the representational advantages of fuzzy rules. In a comprehensive experimental study, TSK-Streams is shown to be highly competitive in terms of performance. |
doi_str_mv | 10.1007/s10618-021-00769-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2566145730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566145730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a5a973c5948580f6a432315e9cddbb72fa40355ae8a8ffc05193aa3e56dc72e93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Qm2WR3vUmxKhY8tIK3kO4mpaXdrZntYfvrja7gTRiYD95nhnkZu0a4RYD8jhAMFgIkitSaUuAJG6HOlci1-ThNtSoyoQuEc3ZBtAEALRWM2HQxfxXzLnq3o3u-9S4262bF05SHw_HYc-qp8zvioY08-lX0ROu24Slq1zlOA3rJzoLbkr_6zWP2Pn1cTJ7F7O3pZfIwE5XCrBNOuzJXlS6zQhcQjMuUVKh9WdX1cpnL4DJQWjtfuCKECjSWyjnltamrXPpSjdnNsHcf28-Dp85u2kNs0kkrtTGYpZchqeSgqmJLFH2w-7jeudhbBPvtlx38sskv--OXxQSpAaIkblY-_q3-h_oCpVptIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566145730</pqid></control><display><type>article</type><title>TSK-Streams: learning TSK fuzzy systems for regression on data streams</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shaker, Ammar ; Hüllermeier, Eyke</creator><creatorcontrib>Shaker, Ammar ; Hüllermeier, Eyke</creatorcontrib><description>The problem of adaptive learning from evolving and possibly non-stationary data streams has attracted a lot of interest in machine learning in the recent past, and also stimulated research in related fields, such as computational intelligence and fuzzy systems. In particular, several rule-based methods for the incremental induction of regression models have been proposed. In this paper, we develop a method that combines the strengths of two existing approaches rooted in different learning paradigms. More concretely, our method adopts basic principles of the state-of-the-art learning algorithm AMRules and enriches them by the representational advantages of fuzzy rules. In a comprehensive experimental study, TSK-Streams is shown to be highly competitive in terms of performance.</description><identifier>ISSN: 1384-5810</identifier><identifier>EISSN: 1573-756X</identifier><identifier>DOI: 10.1007/s10618-021-00769-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Chemistry and Earth Sciences ; Computer Science ; Data Mining and Knowledge Discovery ; Data transmission ; Distance learning ; Fuzzy sets ; Fuzzy systems ; Hypotheses ; Information Storage and Retrieval ; Machine learning ; Methods ; Physics ; Regression models ; Statistics for Engineering ; Trees</subject><ispartof>Data mining and knowledge discovery, 2021-09, Vol.35 (5), p.1941-1971</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-a5a973c5948580f6a432315e9cddbb72fa40355ae8a8ffc05193aa3e56dc72e93</cites><orcidid>0000-0002-9944-4108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10618-021-00769-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10618-021-00769-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Shaker, Ammar</creatorcontrib><creatorcontrib>Hüllermeier, Eyke</creatorcontrib><title>TSK-Streams: learning TSK fuzzy systems for regression on data streams</title><title>Data mining and knowledge discovery</title><addtitle>Data Min Knowl Disc</addtitle><description>The problem of adaptive learning from evolving and possibly non-stationary data streams has attracted a lot of interest in machine learning in the recent past, and also stimulated research in related fields, such as computational intelligence and fuzzy systems. In particular, several rule-based methods for the incremental induction of regression models have been proposed. In this paper, we develop a method that combines the strengths of two existing approaches rooted in different learning paradigms. More concretely, our method adopts basic principles of the state-of-the-art learning algorithm AMRules and enriches them by the representational advantages of fuzzy rules. In a comprehensive experimental study, TSK-Streams is shown to be highly competitive in terms of performance.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data transmission</subject><subject>Distance learning</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Hypotheses</subject><subject>Information Storage and Retrieval</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Physics</subject><subject>Regression models</subject><subject>Statistics for Engineering</subject><subject>Trees</subject><issn>1384-5810</issn><issn>1573-756X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Qm2WR3vUmxKhY8tIK3kO4mpaXdrZntYfvrja7gTRiYD95nhnkZu0a4RYD8jhAMFgIkitSaUuAJG6HOlci1-ThNtSoyoQuEc3ZBtAEALRWM2HQxfxXzLnq3o3u-9S4262bF05SHw_HYc-qp8zvioY08-lX0ROu24Slq1zlOA3rJzoLbkr_6zWP2Pn1cTJ7F7O3pZfIwE5XCrBNOuzJXlS6zQhcQjMuUVKh9WdX1cpnL4DJQWjtfuCKECjSWyjnltamrXPpSjdnNsHcf28-Dp85u2kNs0kkrtTGYpZchqeSgqmJLFH2w-7jeudhbBPvtlx38sskv--OXxQSpAaIkblY-_q3-h_oCpVptIw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Shaker, Ammar</creator><creator>Hüllermeier, Eyke</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9944-4108</orcidid></search><sort><creationdate>20210901</creationdate><title>TSK-Streams: learning TSK fuzzy systems for regression on data streams</title><author>Shaker, Ammar ; Hüllermeier, Eyke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a5a973c5948580f6a432315e9cddbb72fa40355ae8a8ffc05193aa3e56dc72e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data transmission</topic><topic>Distance learning</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Hypotheses</topic><topic>Information Storage and Retrieval</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Physics</topic><topic>Regression models</topic><topic>Statistics for Engineering</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaker, Ammar</creatorcontrib><creatorcontrib>Hüllermeier, Eyke</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaker, Ammar</au><au>Hüllermeier, Eyke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TSK-Streams: learning TSK fuzzy systems for regression on data streams</atitle><jtitle>Data mining and knowledge discovery</jtitle><stitle>Data Min Knowl Disc</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>35</volume><issue>5</issue><spage>1941</spage><epage>1971</epage><pages>1941-1971</pages><issn>1384-5810</issn><eissn>1573-756X</eissn><abstract>The problem of adaptive learning from evolving and possibly non-stationary data streams has attracted a lot of interest in machine learning in the recent past, and also stimulated research in related fields, such as computational intelligence and fuzzy systems. In particular, several rule-based methods for the incremental induction of regression models have been proposed. In this paper, we develop a method that combines the strengths of two existing approaches rooted in different learning paradigms. More concretely, our method adopts basic principles of the state-of-the-art learning algorithm AMRules and enriches them by the representational advantages of fuzzy rules. In a comprehensive experimental study, TSK-Streams is shown to be highly competitive in terms of performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10618-021-00769-1</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-9944-4108</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-5810 |
ispartof | Data mining and knowledge discovery, 2021-09, Vol.35 (5), p.1941-1971 |
issn | 1384-5810 1573-756X |
language | eng |
recordid | cdi_proquest_journals_2566145730 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Data transmission Distance learning Fuzzy sets Fuzzy systems Hypotheses Information Storage and Retrieval Machine learning Methods Physics Regression models Statistics for Engineering Trees |
title | TSK-Streams: learning TSK fuzzy systems for regression on data streams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TSK-Streams:%20learning%20TSK%20fuzzy%20systems%20for%20regression%20on%20data%20streams&rft.jtitle=Data%20mining%20and%20knowledge%20discovery&rft.au=Shaker,%20Ammar&rft.date=2021-09-01&rft.volume=35&rft.issue=5&rft.spage=1941&rft.epage=1971&rft.pages=1941-1971&rft.issn=1384-5810&rft.eissn=1573-756X&rft_id=info:doi/10.1007/s10618-021-00769-1&rft_dat=%3Cproquest_cross%3E2566145730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566145730&rft_id=info:pmid/&rfr_iscdi=true |