TSK-Streams: learning TSK fuzzy systems for regression on data streams

The problem of adaptive learning from evolving and possibly non-stationary data streams has attracted a lot of interest in machine learning in the recent past, and also stimulated research in related fields, such as computational intelligence and fuzzy systems. In particular, several rule-based meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data mining and knowledge discovery 2021-09, Vol.35 (5), p.1941-1971
Hauptverfasser: Shaker, Ammar, Hüllermeier, Eyke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1971
container_issue 5
container_start_page 1941
container_title Data mining and knowledge discovery
container_volume 35
creator Shaker, Ammar
Hüllermeier, Eyke
description The problem of adaptive learning from evolving and possibly non-stationary data streams has attracted a lot of interest in machine learning in the recent past, and also stimulated research in related fields, such as computational intelligence and fuzzy systems. In particular, several rule-based methods for the incremental induction of regression models have been proposed. In this paper, we develop a method that combines the strengths of two existing approaches rooted in different learning paradigms. More concretely, our method adopts basic principles of the state-of-the-art learning algorithm AMRules and enriches them by the representational advantages of fuzzy rules. In a comprehensive experimental study, TSK-Streams is shown to be highly competitive in terms of performance.
doi_str_mv 10.1007/s10618-021-00769-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2566145730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566145730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a5a973c5948580f6a432315e9cddbb72fa40355ae8a8ffc05193aa3e56dc72e93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Qm2WR3vUmxKhY8tIK3kO4mpaXdrZntYfvrja7gTRiYD95nhnkZu0a4RYD8jhAMFgIkitSaUuAJG6HOlci1-ThNtSoyoQuEc3ZBtAEALRWM2HQxfxXzLnq3o3u-9S4262bF05SHw_HYc-qp8zvioY08-lX0ROu24Slq1zlOA3rJzoLbkr_6zWP2Pn1cTJ7F7O3pZfIwE5XCrBNOuzJXlS6zQhcQjMuUVKh9WdX1cpnL4DJQWjtfuCKECjSWyjnltamrXPpSjdnNsHcf28-Dp85u2kNs0kkrtTGYpZchqeSgqmJLFH2w-7jeudhbBPvtlx38sskv--OXxQSpAaIkblY-_q3-h_oCpVptIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566145730</pqid></control><display><type>article</type><title>TSK-Streams: learning TSK fuzzy systems for regression on data streams</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shaker, Ammar ; Hüllermeier, Eyke</creator><creatorcontrib>Shaker, Ammar ; Hüllermeier, Eyke</creatorcontrib><description>The problem of adaptive learning from evolving and possibly non-stationary data streams has attracted a lot of interest in machine learning in the recent past, and also stimulated research in related fields, such as computational intelligence and fuzzy systems. In particular, several rule-based methods for the incremental induction of regression models have been proposed. In this paper, we develop a method that combines the strengths of two existing approaches rooted in different learning paradigms. More concretely, our method adopts basic principles of the state-of-the-art learning algorithm AMRules and enriches them by the representational advantages of fuzzy rules. In a comprehensive experimental study, TSK-Streams is shown to be highly competitive in terms of performance.</description><identifier>ISSN: 1384-5810</identifier><identifier>EISSN: 1573-756X</identifier><identifier>DOI: 10.1007/s10618-021-00769-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Chemistry and Earth Sciences ; Computer Science ; Data Mining and Knowledge Discovery ; Data transmission ; Distance learning ; Fuzzy sets ; Fuzzy systems ; Hypotheses ; Information Storage and Retrieval ; Machine learning ; Methods ; Physics ; Regression models ; Statistics for Engineering ; Trees</subject><ispartof>Data mining and knowledge discovery, 2021-09, Vol.35 (5), p.1941-1971</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-a5a973c5948580f6a432315e9cddbb72fa40355ae8a8ffc05193aa3e56dc72e93</cites><orcidid>0000-0002-9944-4108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10618-021-00769-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10618-021-00769-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Shaker, Ammar</creatorcontrib><creatorcontrib>Hüllermeier, Eyke</creatorcontrib><title>TSK-Streams: learning TSK fuzzy systems for regression on data streams</title><title>Data mining and knowledge discovery</title><addtitle>Data Min Knowl Disc</addtitle><description>The problem of adaptive learning from evolving and possibly non-stationary data streams has attracted a lot of interest in machine learning in the recent past, and also stimulated research in related fields, such as computational intelligence and fuzzy systems. In particular, several rule-based methods for the incremental induction of regression models have been proposed. In this paper, we develop a method that combines the strengths of two existing approaches rooted in different learning paradigms. More concretely, our method adopts basic principles of the state-of-the-art learning algorithm AMRules and enriches them by the representational advantages of fuzzy rules. In a comprehensive experimental study, TSK-Streams is shown to be highly competitive in terms of performance.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data transmission</subject><subject>Distance learning</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Hypotheses</subject><subject>Information Storage and Retrieval</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Physics</subject><subject>Regression models</subject><subject>Statistics for Engineering</subject><subject>Trees</subject><issn>1384-5810</issn><issn>1573-756X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Qm2WR3vUmxKhY8tIK3kO4mpaXdrZntYfvrja7gTRiYD95nhnkZu0a4RYD8jhAMFgIkitSaUuAJG6HOlci1-ThNtSoyoQuEc3ZBtAEALRWM2HQxfxXzLnq3o3u-9S4262bF05SHw_HYc-qp8zvioY08-lX0ROu24Slq1zlOA3rJzoLbkr_6zWP2Pn1cTJ7F7O3pZfIwE5XCrBNOuzJXlS6zQhcQjMuUVKh9WdX1cpnL4DJQWjtfuCKECjSWyjnltamrXPpSjdnNsHcf28-Dp85u2kNs0kkrtTGYpZchqeSgqmJLFH2w-7jeudhbBPvtlx38sskv--OXxQSpAaIkblY-_q3-h_oCpVptIw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Shaker, Ammar</creator><creator>Hüllermeier, Eyke</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9944-4108</orcidid></search><sort><creationdate>20210901</creationdate><title>TSK-Streams: learning TSK fuzzy systems for regression on data streams</title><author>Shaker, Ammar ; Hüllermeier, Eyke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a5a973c5948580f6a432315e9cddbb72fa40355ae8a8ffc05193aa3e56dc72e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data transmission</topic><topic>Distance learning</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Hypotheses</topic><topic>Information Storage and Retrieval</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Physics</topic><topic>Regression models</topic><topic>Statistics for Engineering</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaker, Ammar</creatorcontrib><creatorcontrib>Hüllermeier, Eyke</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaker, Ammar</au><au>Hüllermeier, Eyke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TSK-Streams: learning TSK fuzzy systems for regression on data streams</atitle><jtitle>Data mining and knowledge discovery</jtitle><stitle>Data Min Knowl Disc</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>35</volume><issue>5</issue><spage>1941</spage><epage>1971</epage><pages>1941-1971</pages><issn>1384-5810</issn><eissn>1573-756X</eissn><abstract>The problem of adaptive learning from evolving and possibly non-stationary data streams has attracted a lot of interest in machine learning in the recent past, and also stimulated research in related fields, such as computational intelligence and fuzzy systems. In particular, several rule-based methods for the incremental induction of regression models have been proposed. In this paper, we develop a method that combines the strengths of two existing approaches rooted in different learning paradigms. More concretely, our method adopts basic principles of the state-of-the-art learning algorithm AMRules and enriches them by the representational advantages of fuzzy rules. In a comprehensive experimental study, TSK-Streams is shown to be highly competitive in terms of performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10618-021-00769-1</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-9944-4108</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1384-5810
ispartof Data mining and knowledge discovery, 2021-09, Vol.35 (5), p.1941-1971
issn 1384-5810
1573-756X
language eng
recordid cdi_proquest_journals_2566145730
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Data transmission
Distance learning
Fuzzy sets
Fuzzy systems
Hypotheses
Information Storage and Retrieval
Machine learning
Methods
Physics
Regression models
Statistics for Engineering
Trees
title TSK-Streams: learning TSK fuzzy systems for regression on data streams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TSK-Streams:%20learning%20TSK%20fuzzy%20systems%20for%20regression%20on%20data%20streams&rft.jtitle=Data%20mining%20and%20knowledge%20discovery&rft.au=Shaker,%20Ammar&rft.date=2021-09-01&rft.volume=35&rft.issue=5&rft.spage=1941&rft.epage=1971&rft.pages=1941-1971&rft.issn=1384-5810&rft.eissn=1573-756X&rft_id=info:doi/10.1007/s10618-021-00769-1&rft_dat=%3Cproquest_cross%3E2566145730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566145730&rft_id=info:pmid/&rfr_iscdi=true