Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI

This protocol describes the isolation of gas-filled protein nanostructures, called gas vesicles, their functionalization with moieties for targeting and fluorescence, and how to use them as contrast agents for ultrasound and MRI. Gas vesicles (GVs) are a unique class of gas-filled protein nanostruct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2017-10, Vol.12 (10), p.2050-2080
Hauptverfasser: Lakshmanan, Anupama, Lu, George J, Farhadi, Arash, Nety, Suchita P, Kunth, Martin, Lee-Gosselin, Audrey, Maresca, David, Bourdeau, Raymond W, Yin, Melissa, Yan, Judy, Witte, Christopher, Malounda, Dina, Foster, F Stuart, Schröder, Leif, Shapiro, Mikhail G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2080
container_issue 10
container_start_page 2050
container_title Nature protocols
container_volume 12
creator Lakshmanan, Anupama
Lu, George J
Farhadi, Arash
Nety, Suchita P
Kunth, Martin
Lee-Gosselin, Audrey
Maresca, David
Bourdeau, Raymond W
Yin, Melissa
Yan, Judy
Witte, Christopher
Malounda, Dina
Foster, F Stuart
Schröder, Leif
Shapiro, Mikhail G
description This protocol describes the isolation of gas-filled protein nanostructures, called gas vesicles, their functionalization with moieties for targeting and fluorescence, and how to use them as contrast agents for ultrasound and MRI. Gas vesicles (GVs) are a unique class of gas-filled protein nanostructures that are detectable at subnanomolar concentrations and whose physical properties allow them to serve as highly sensitive imaging agents for ultrasound and MRI. Here we provide a protocol for isolating GVs from native and heterologous host organisms, functionalizing these nanostructures with moieties for targeting and fluorescence, characterizing their biophysical properties and imaging them using ultrasound and MRI. GVs can be isolated from natural cyanobacterial and haloarchaeal host organisms or from Escherichia coli expressing a heterologous GV gene cluster and purified using buoyancy-assisted techniques. They can then be modified by replacing surface-bound proteins with engineered, heterologously expressed variants or through chemical conjugation, resulting in altered mechanical, surface and targeting properties. Pressurized absorbance spectroscopy is used to characterize their mechanical properties, whereas dynamic light scattering (DLS)and transmission electron microscopy (TEM) are used to determine nanoparticle size and morphology, respectively. GVs can then be imaged with ultrasound in vitro and in vivo using pulse sequences optimized for their detection versus background. They can also be imaged with hyperpolarized xenon MRI using chemical exchange saturation transfer between GV-bound and dissolved xenon—a technique currently implemented in vitro . Taking 3–8 d to prepare, these genetically encodable nanostructures enable multimodal, noninvasive biological imaging with high sensitivity and potential for molecular targeting.
doi_str_mv 10.1038/nprot.2017.081
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2566145652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A507853789</galeid><sourcerecordid>A507853789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-42688b1f35ab5fd6aa625093f7a54854f0ecb9c554009026f5d27d090f16fc343</originalsourceid><addsrcrecordid>eNp9kctLJDEQxsOyy_rYvXqUwJ57zKuS9FFkH4KiLHoO6XQytMwkY5IW9r8344ziYfEQqkj96qtUPoROKFlQwvVZ3ORUF4xQtSCafkKHVAHpmOr7zy-56BjV_QE6KuWBEKG4VF_RAdNaE6b0IRpvs9_YbOuUIk4BD1Na-jg5vLQFP_kyuZXH0cZUap5dnbMvOKSM5-JxI1yKNdtSsW1ddV9aba_SHEds27n-e_kNfQl2Vfz3fTxG979-3l386a5ufl9enF91DhjUTjCp9UADBztAGKW1kgHpeVAWhAYRiHdD7wAEIT1hMsDI1NjSQGVwXPBj9GOn2z7lcfalmoc059hGGgZSUgES2EcU7bnimoB4p7W0K2-mGFLbyq2n4sw5EKWBK903arGjXE6lZB_MJk9rm_8ZSszWIPNikNkaZJpBreF0P3we1n58w18dacDZDiitFJc-v3vd_yWfAVmhmvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937380544</pqid></control><display><type>article</type><title>Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Lakshmanan, Anupama ; Lu, George J ; Farhadi, Arash ; Nety, Suchita P ; Kunth, Martin ; Lee-Gosselin, Audrey ; Maresca, David ; Bourdeau, Raymond W ; Yin, Melissa ; Yan, Judy ; Witte, Christopher ; Malounda, Dina ; Foster, F Stuart ; Schröder, Leif ; Shapiro, Mikhail G</creator><creatorcontrib>Lakshmanan, Anupama ; Lu, George J ; Farhadi, Arash ; Nety, Suchita P ; Kunth, Martin ; Lee-Gosselin, Audrey ; Maresca, David ; Bourdeau, Raymond W ; Yin, Melissa ; Yan, Judy ; Witte, Christopher ; Malounda, Dina ; Foster, F Stuart ; Schröder, Leif ; Shapiro, Mikhail G</creatorcontrib><description>This protocol describes the isolation of gas-filled protein nanostructures, called gas vesicles, their functionalization with moieties for targeting and fluorescence, and how to use them as contrast agents for ultrasound and MRI. Gas vesicles (GVs) are a unique class of gas-filled protein nanostructures that are detectable at subnanomolar concentrations and whose physical properties allow them to serve as highly sensitive imaging agents for ultrasound and MRI. Here we provide a protocol for isolating GVs from native and heterologous host organisms, functionalizing these nanostructures with moieties for targeting and fluorescence, characterizing their biophysical properties and imaging them using ultrasound and MRI. GVs can be isolated from natural cyanobacterial and haloarchaeal host organisms or from Escherichia coli expressing a heterologous GV gene cluster and purified using buoyancy-assisted techniques. They can then be modified by replacing surface-bound proteins with engineered, heterologously expressed variants or through chemical conjugation, resulting in altered mechanical, surface and targeting properties. Pressurized absorbance spectroscopy is used to characterize their mechanical properties, whereas dynamic light scattering (DLS)and transmission electron microscopy (TEM) are used to determine nanoparticle size and morphology, respectively. GVs can then be imaged with ultrasound in vitro and in vivo using pulse sequences optimized for their detection versus background. They can also be imaged with hyperpolarized xenon MRI using chemical exchange saturation transfer between GV-bound and dissolved xenon—a technique currently implemented in vitro . Taking 3–8 d to prepare, these genetically encodable nanostructures enable multimodal, noninvasive biological imaging with high sensitivity and potential for molecular targeting.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/nprot.2017.081</identifier><identifier>PMID: 28880278</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>59/57 ; 631/1647/1511 ; 631/1647/245/1628 ; 631/1647/245/1859 ; 639/638/549/2263 ; 639/925/350/2093 ; 82/80 ; Absorbance ; Analytical Chemistry ; Biological Techniques ; Buoyancy ; Computational Biology/Bioinformatics ; Conjugation ; Contrast agents ; Contrast media ; Contrast Media - chemistry ; E coli ; Electron microscopy ; Escherichia coli ; Fluorescence ; In vitro methods and tests ; Innovations ; Life Sciences ; Light scattering ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mechanical properties ; Methods ; Microarrays ; Microscopy, Electron, Transmission ; Morphology ; Nanoparticles ; Nanostructure ; Nanostructures - chemistry ; Nanotechnology ; Organelles ; Organic Chemistry ; Photon correlation spectroscopy ; Physical properties ; Properties ; Proteins ; protocol ; Spectroscopy ; Transmission electron microscopy ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasound ; Vesicles ; Xenon</subject><ispartof>Nature protocols, 2017-10, Vol.12 (10), p.2050-2080</ispartof><rights>Springer Nature Limited 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2017</rights><rights>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-42688b1f35ab5fd6aa625093f7a54854f0ecb9c554009026f5d27d090f16fc343</citedby><cites>FETCH-LOGICAL-c525t-42688b1f35ab5fd6aa625093f7a54854f0ecb9c554009026f5d27d090f16fc343</cites><orcidid>0000-0002-0291-4215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nprot.2017.081$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nprot.2017.081$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28880278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakshmanan, Anupama</creatorcontrib><creatorcontrib>Lu, George J</creatorcontrib><creatorcontrib>Farhadi, Arash</creatorcontrib><creatorcontrib>Nety, Suchita P</creatorcontrib><creatorcontrib>Kunth, Martin</creatorcontrib><creatorcontrib>Lee-Gosselin, Audrey</creatorcontrib><creatorcontrib>Maresca, David</creatorcontrib><creatorcontrib>Bourdeau, Raymond W</creatorcontrib><creatorcontrib>Yin, Melissa</creatorcontrib><creatorcontrib>Yan, Judy</creatorcontrib><creatorcontrib>Witte, Christopher</creatorcontrib><creatorcontrib>Malounda, Dina</creatorcontrib><creatorcontrib>Foster, F Stuart</creatorcontrib><creatorcontrib>Schröder, Leif</creatorcontrib><creatorcontrib>Shapiro, Mikhail G</creatorcontrib><title>Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>This protocol describes the isolation of gas-filled protein nanostructures, called gas vesicles, their functionalization with moieties for targeting and fluorescence, and how to use them as contrast agents for ultrasound and MRI. Gas vesicles (GVs) are a unique class of gas-filled protein nanostructures that are detectable at subnanomolar concentrations and whose physical properties allow them to serve as highly sensitive imaging agents for ultrasound and MRI. Here we provide a protocol for isolating GVs from native and heterologous host organisms, functionalizing these nanostructures with moieties for targeting and fluorescence, characterizing their biophysical properties and imaging them using ultrasound and MRI. GVs can be isolated from natural cyanobacterial and haloarchaeal host organisms or from Escherichia coli expressing a heterologous GV gene cluster and purified using buoyancy-assisted techniques. They can then be modified by replacing surface-bound proteins with engineered, heterologously expressed variants or through chemical conjugation, resulting in altered mechanical, surface and targeting properties. Pressurized absorbance spectroscopy is used to characterize their mechanical properties, whereas dynamic light scattering (DLS)and transmission electron microscopy (TEM) are used to determine nanoparticle size and morphology, respectively. GVs can then be imaged with ultrasound in vitro and in vivo using pulse sequences optimized for their detection versus background. They can also be imaged with hyperpolarized xenon MRI using chemical exchange saturation transfer between GV-bound and dissolved xenon—a technique currently implemented in vitro . Taking 3–8 d to prepare, these genetically encodable nanostructures enable multimodal, noninvasive biological imaging with high sensitivity and potential for molecular targeting.</description><subject>59/57</subject><subject>631/1647/1511</subject><subject>631/1647/245/1628</subject><subject>631/1647/245/1859</subject><subject>639/638/549/2263</subject><subject>639/925/350/2093</subject><subject>82/80</subject><subject>Absorbance</subject><subject>Analytical Chemistry</subject><subject>Biological Techniques</subject><subject>Buoyancy</subject><subject>Computational Biology/Bioinformatics</subject><subject>Conjugation</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>Contrast Media - chemistry</subject><subject>E coli</subject><subject>Electron microscopy</subject><subject>Escherichia coli</subject><subject>Fluorescence</subject><subject>In vitro methods and tests</subject><subject>Innovations</subject><subject>Life Sciences</subject><subject>Light scattering</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Microarrays</subject><subject>Microscopy, Electron, Transmission</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Organelles</subject><subject>Organic Chemistry</subject><subject>Photon correlation spectroscopy</subject><subject>Physical properties</subject><subject>Properties</subject><subject>Proteins</subject><subject>protocol</subject><subject>Spectroscopy</subject><subject>Transmission electron microscopy</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>Vesicles</subject><subject>Xenon</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctLJDEQxsOyy_rYvXqUwJ57zKuS9FFkH4KiLHoO6XQytMwkY5IW9r8344ziYfEQqkj96qtUPoROKFlQwvVZ3ORUF4xQtSCafkKHVAHpmOr7zy-56BjV_QE6KuWBEKG4VF_RAdNaE6b0IRpvs9_YbOuUIk4BD1Na-jg5vLQFP_kyuZXH0cZUap5dnbMvOKSM5-JxI1yKNdtSsW1ddV9aba_SHEds27n-e_kNfQl2Vfz3fTxG979-3l386a5ufl9enF91DhjUTjCp9UADBztAGKW1kgHpeVAWhAYRiHdD7wAEIT1hMsDI1NjSQGVwXPBj9GOn2z7lcfalmoc059hGGgZSUgES2EcU7bnimoB4p7W0K2-mGFLbyq2n4sw5EKWBK903arGjXE6lZB_MJk9rm_8ZSszWIPNikNkaZJpBreF0P3we1n58w18dacDZDiitFJc-v3vd_yWfAVmhmvw</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Lakshmanan, Anupama</creator><creator>Lu, George J</creator><creator>Farhadi, Arash</creator><creator>Nety, Suchita P</creator><creator>Kunth, Martin</creator><creator>Lee-Gosselin, Audrey</creator><creator>Maresca, David</creator><creator>Bourdeau, Raymond W</creator><creator>Yin, Melissa</creator><creator>Yan, Judy</creator><creator>Witte, Christopher</creator><creator>Malounda, Dina</creator><creator>Foster, F Stuart</creator><creator>Schröder, Leif</creator><creator>Shapiro, Mikhail G</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-0291-4215</orcidid></search><sort><creationdate>20171001</creationdate><title>Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI</title><author>Lakshmanan, Anupama ; Lu, George J ; Farhadi, Arash ; Nety, Suchita P ; Kunth, Martin ; Lee-Gosselin, Audrey ; Maresca, David ; Bourdeau, Raymond W ; Yin, Melissa ; Yan, Judy ; Witte, Christopher ; Malounda, Dina ; Foster, F Stuart ; Schröder, Leif ; Shapiro, Mikhail G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-42688b1f35ab5fd6aa625093f7a54854f0ecb9c554009026f5d27d090f16fc343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>59/57</topic><topic>631/1647/1511</topic><topic>631/1647/245/1628</topic><topic>631/1647/245/1859</topic><topic>639/638/549/2263</topic><topic>639/925/350/2093</topic><topic>82/80</topic><topic>Absorbance</topic><topic>Analytical Chemistry</topic><topic>Biological Techniques</topic><topic>Buoyancy</topic><topic>Computational Biology/Bioinformatics</topic><topic>Conjugation</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>Contrast Media - chemistry</topic><topic>E coli</topic><topic>Electron microscopy</topic><topic>Escherichia coli</topic><topic>Fluorescence</topic><topic>In vitro methods and tests</topic><topic>Innovations</topic><topic>Life Sciences</topic><topic>Light scattering</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Microarrays</topic><topic>Microscopy, Electron, Transmission</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Organelles</topic><topic>Organic Chemistry</topic><topic>Photon correlation spectroscopy</topic><topic>Physical properties</topic><topic>Properties</topic><topic>Proteins</topic><topic>protocol</topic><topic>Spectroscopy</topic><topic>Transmission electron microscopy</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>Vesicles</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakshmanan, Anupama</creatorcontrib><creatorcontrib>Lu, George J</creatorcontrib><creatorcontrib>Farhadi, Arash</creatorcontrib><creatorcontrib>Nety, Suchita P</creatorcontrib><creatorcontrib>Kunth, Martin</creatorcontrib><creatorcontrib>Lee-Gosselin, Audrey</creatorcontrib><creatorcontrib>Maresca, David</creatorcontrib><creatorcontrib>Bourdeau, Raymond W</creatorcontrib><creatorcontrib>Yin, Melissa</creatorcontrib><creatorcontrib>Yan, Judy</creatorcontrib><creatorcontrib>Witte, Christopher</creatorcontrib><creatorcontrib>Malounda, Dina</creatorcontrib><creatorcontrib>Foster, F Stuart</creatorcontrib><creatorcontrib>Schröder, Leif</creatorcontrib><creatorcontrib>Shapiro, Mikhail G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmanan, Anupama</au><au>Lu, George J</au><au>Farhadi, Arash</au><au>Nety, Suchita P</au><au>Kunth, Martin</au><au>Lee-Gosselin, Audrey</au><au>Maresca, David</au><au>Bourdeau, Raymond W</au><au>Yin, Melissa</au><au>Yan, Judy</au><au>Witte, Christopher</au><au>Malounda, Dina</au><au>Foster, F Stuart</au><au>Schröder, Leif</au><au>Shapiro, Mikhail G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>12</volume><issue>10</issue><spage>2050</spage><epage>2080</epage><pages>2050-2080</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>This protocol describes the isolation of gas-filled protein nanostructures, called gas vesicles, their functionalization with moieties for targeting and fluorescence, and how to use them as contrast agents for ultrasound and MRI. Gas vesicles (GVs) are a unique class of gas-filled protein nanostructures that are detectable at subnanomolar concentrations and whose physical properties allow them to serve as highly sensitive imaging agents for ultrasound and MRI. Here we provide a protocol for isolating GVs from native and heterologous host organisms, functionalizing these nanostructures with moieties for targeting and fluorescence, characterizing their biophysical properties and imaging them using ultrasound and MRI. GVs can be isolated from natural cyanobacterial and haloarchaeal host organisms or from Escherichia coli expressing a heterologous GV gene cluster and purified using buoyancy-assisted techniques. They can then be modified by replacing surface-bound proteins with engineered, heterologously expressed variants or through chemical conjugation, resulting in altered mechanical, surface and targeting properties. Pressurized absorbance spectroscopy is used to characterize their mechanical properties, whereas dynamic light scattering (DLS)and transmission electron microscopy (TEM) are used to determine nanoparticle size and morphology, respectively. GVs can then be imaged with ultrasound in vitro and in vivo using pulse sequences optimized for their detection versus background. They can also be imaged with hyperpolarized xenon MRI using chemical exchange saturation transfer between GV-bound and dissolved xenon—a technique currently implemented in vitro . Taking 3–8 d to prepare, these genetically encodable nanostructures enable multimodal, noninvasive biological imaging with high sensitivity and potential for molecular targeting.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28880278</pmid><doi>10.1038/nprot.2017.081</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-0291-4215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-2189
ispartof Nature protocols, 2017-10, Vol.12 (10), p.2050-2080
issn 1754-2189
1750-2799
language eng
recordid cdi_proquest_journals_2566145652
source MEDLINE; SpringerLink Journals; Nature
subjects 59/57
631/1647/1511
631/1647/245/1628
631/1647/245/1859
639/638/549/2263
639/925/350/2093
82/80
Absorbance
Analytical Chemistry
Biological Techniques
Buoyancy
Computational Biology/Bioinformatics
Conjugation
Contrast agents
Contrast media
Contrast Media - chemistry
E coli
Electron microscopy
Escherichia coli
Fluorescence
In vitro methods and tests
Innovations
Life Sciences
Light scattering
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mechanical properties
Methods
Microarrays
Microscopy, Electron, Transmission
Morphology
Nanoparticles
Nanostructure
Nanostructures - chemistry
Nanotechnology
Organelles
Organic Chemistry
Photon correlation spectroscopy
Physical properties
Properties
Proteins
protocol
Spectroscopy
Transmission electron microscopy
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
Vesicles
Xenon
title Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20biogenic%20gas%20vesicle%20nanostructures%20for%20use%20as%20contrast%20agents%20for%20ultrasound%20and%20MRI&rft.jtitle=Nature%20protocols&rft.au=Lakshmanan,%20Anupama&rft.date=2017-10-01&rft.volume=12&rft.issue=10&rft.spage=2050&rft.epage=2080&rft.pages=2050-2080&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/nprot.2017.081&rft_dat=%3Cgale_proqu%3EA507853789%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937380544&rft_id=info:pmid/28880278&rft_galeid=A507853789&rfr_iscdi=true