Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI
This protocol describes the isolation of gas-filled protein nanostructures, called gas vesicles, their functionalization with moieties for targeting and fluorescence, and how to use them as contrast agents for ultrasound and MRI. Gas vesicles (GVs) are a unique class of gas-filled protein nanostruct...
Gespeichert in:
Veröffentlicht in: | Nature protocols 2017-10, Vol.12 (10), p.2050-2080 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2080 |
---|---|
container_issue | 10 |
container_start_page | 2050 |
container_title | Nature protocols |
container_volume | 12 |
creator | Lakshmanan, Anupama Lu, George J Farhadi, Arash Nety, Suchita P Kunth, Martin Lee-Gosselin, Audrey Maresca, David Bourdeau, Raymond W Yin, Melissa Yan, Judy Witte, Christopher Malounda, Dina Foster, F Stuart Schröder, Leif Shapiro, Mikhail G |
description | This protocol describes the isolation of gas-filled protein nanostructures, called gas vesicles, their functionalization with moieties for targeting and fluorescence, and how to use them as contrast agents for ultrasound and MRI.
Gas vesicles (GVs) are a unique class of gas-filled protein nanostructures that are detectable at subnanomolar concentrations and whose physical properties allow them to serve as highly sensitive imaging agents for ultrasound and MRI. Here we provide a protocol for isolating GVs from native and heterologous host organisms, functionalizing these nanostructures with moieties for targeting and fluorescence, characterizing their biophysical properties and imaging them using ultrasound and MRI. GVs can be isolated from natural cyanobacterial and haloarchaeal host organisms or from
Escherichia coli
expressing a heterologous GV gene cluster and purified using buoyancy-assisted techniques. They can then be modified by replacing surface-bound proteins with engineered, heterologously expressed variants or through chemical conjugation, resulting in altered mechanical, surface and targeting properties. Pressurized absorbance spectroscopy is used to characterize their mechanical properties, whereas dynamic light scattering (DLS)and transmission electron microscopy (TEM) are used to determine nanoparticle size and morphology, respectively. GVs can then be imaged with ultrasound
in vitro
and
in vivo
using pulse sequences optimized for their detection versus background. They can also be imaged with hyperpolarized xenon MRI using chemical exchange saturation transfer between GV-bound and dissolved xenon—a technique currently implemented
in vitro
. Taking 3–8 d to prepare, these genetically encodable nanostructures enable multimodal, noninvasive biological imaging with high sensitivity and potential for molecular targeting. |
doi_str_mv | 10.1038/nprot.2017.081 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2566145652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A507853789</galeid><sourcerecordid>A507853789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-42688b1f35ab5fd6aa625093f7a54854f0ecb9c554009026f5d27d090f16fc343</originalsourceid><addsrcrecordid>eNp9kctLJDEQxsOyy_rYvXqUwJ57zKuS9FFkH4KiLHoO6XQytMwkY5IW9r8344ziYfEQqkj96qtUPoROKFlQwvVZ3ORUF4xQtSCafkKHVAHpmOr7zy-56BjV_QE6KuWBEKG4VF_RAdNaE6b0IRpvs9_YbOuUIk4BD1Na-jg5vLQFP_kyuZXH0cZUap5dnbMvOKSM5-JxI1yKNdtSsW1ddV9aba_SHEds27n-e_kNfQl2Vfz3fTxG979-3l386a5ufl9enF91DhjUTjCp9UADBztAGKW1kgHpeVAWhAYRiHdD7wAEIT1hMsDI1NjSQGVwXPBj9GOn2z7lcfalmoc059hGGgZSUgES2EcU7bnimoB4p7W0K2-mGFLbyq2n4sw5EKWBK903arGjXE6lZB_MJk9rm_8ZSszWIPNikNkaZJpBreF0P3we1n58w18dacDZDiitFJc-v3vd_yWfAVmhmvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937380544</pqid></control><display><type>article</type><title>Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Lakshmanan, Anupama ; Lu, George J ; Farhadi, Arash ; Nety, Suchita P ; Kunth, Martin ; Lee-Gosselin, Audrey ; Maresca, David ; Bourdeau, Raymond W ; Yin, Melissa ; Yan, Judy ; Witte, Christopher ; Malounda, Dina ; Foster, F Stuart ; Schröder, Leif ; Shapiro, Mikhail G</creator><creatorcontrib>Lakshmanan, Anupama ; Lu, George J ; Farhadi, Arash ; Nety, Suchita P ; Kunth, Martin ; Lee-Gosselin, Audrey ; Maresca, David ; Bourdeau, Raymond W ; Yin, Melissa ; Yan, Judy ; Witte, Christopher ; Malounda, Dina ; Foster, F Stuart ; Schröder, Leif ; Shapiro, Mikhail G</creatorcontrib><description>This protocol describes the isolation of gas-filled protein nanostructures, called gas vesicles, their functionalization with moieties for targeting and fluorescence, and how to use them as contrast agents for ultrasound and MRI.
Gas vesicles (GVs) are a unique class of gas-filled protein nanostructures that are detectable at subnanomolar concentrations and whose physical properties allow them to serve as highly sensitive imaging agents for ultrasound and MRI. Here we provide a protocol for isolating GVs from native and heterologous host organisms, functionalizing these nanostructures with moieties for targeting and fluorescence, characterizing their biophysical properties and imaging them using ultrasound and MRI. GVs can be isolated from natural cyanobacterial and haloarchaeal host organisms or from
Escherichia coli
expressing a heterologous GV gene cluster and purified using buoyancy-assisted techniques. They can then be modified by replacing surface-bound proteins with engineered, heterologously expressed variants or through chemical conjugation, resulting in altered mechanical, surface and targeting properties. Pressurized absorbance spectroscopy is used to characterize their mechanical properties, whereas dynamic light scattering (DLS)and transmission electron microscopy (TEM) are used to determine nanoparticle size and morphology, respectively. GVs can then be imaged with ultrasound
in vitro
and
in vivo
using pulse sequences optimized for their detection versus background. They can also be imaged with hyperpolarized xenon MRI using chemical exchange saturation transfer between GV-bound and dissolved xenon—a technique currently implemented
in vitro
. Taking 3–8 d to prepare, these genetically encodable nanostructures enable multimodal, noninvasive biological imaging with high sensitivity and potential for molecular targeting.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/nprot.2017.081</identifier><identifier>PMID: 28880278</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>59/57 ; 631/1647/1511 ; 631/1647/245/1628 ; 631/1647/245/1859 ; 639/638/549/2263 ; 639/925/350/2093 ; 82/80 ; Absorbance ; Analytical Chemistry ; Biological Techniques ; Buoyancy ; Computational Biology/Bioinformatics ; Conjugation ; Contrast agents ; Contrast media ; Contrast Media - chemistry ; E coli ; Electron microscopy ; Escherichia coli ; Fluorescence ; In vitro methods and tests ; Innovations ; Life Sciences ; Light scattering ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mechanical properties ; Methods ; Microarrays ; Microscopy, Electron, Transmission ; Morphology ; Nanoparticles ; Nanostructure ; Nanostructures - chemistry ; Nanotechnology ; Organelles ; Organic Chemistry ; Photon correlation spectroscopy ; Physical properties ; Properties ; Proteins ; protocol ; Spectroscopy ; Transmission electron microscopy ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasound ; Vesicles ; Xenon</subject><ispartof>Nature protocols, 2017-10, Vol.12 (10), p.2050-2080</ispartof><rights>Springer Nature Limited 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2017</rights><rights>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-42688b1f35ab5fd6aa625093f7a54854f0ecb9c554009026f5d27d090f16fc343</citedby><cites>FETCH-LOGICAL-c525t-42688b1f35ab5fd6aa625093f7a54854f0ecb9c554009026f5d27d090f16fc343</cites><orcidid>0000-0002-0291-4215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nprot.2017.081$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nprot.2017.081$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28880278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakshmanan, Anupama</creatorcontrib><creatorcontrib>Lu, George J</creatorcontrib><creatorcontrib>Farhadi, Arash</creatorcontrib><creatorcontrib>Nety, Suchita P</creatorcontrib><creatorcontrib>Kunth, Martin</creatorcontrib><creatorcontrib>Lee-Gosselin, Audrey</creatorcontrib><creatorcontrib>Maresca, David</creatorcontrib><creatorcontrib>Bourdeau, Raymond W</creatorcontrib><creatorcontrib>Yin, Melissa</creatorcontrib><creatorcontrib>Yan, Judy</creatorcontrib><creatorcontrib>Witte, Christopher</creatorcontrib><creatorcontrib>Malounda, Dina</creatorcontrib><creatorcontrib>Foster, F Stuart</creatorcontrib><creatorcontrib>Schröder, Leif</creatorcontrib><creatorcontrib>Shapiro, Mikhail G</creatorcontrib><title>Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>This protocol describes the isolation of gas-filled protein nanostructures, called gas vesicles, their functionalization with moieties for targeting and fluorescence, and how to use them as contrast agents for ultrasound and MRI.
Gas vesicles (GVs) are a unique class of gas-filled protein nanostructures that are detectable at subnanomolar concentrations and whose physical properties allow them to serve as highly sensitive imaging agents for ultrasound and MRI. Here we provide a protocol for isolating GVs from native and heterologous host organisms, functionalizing these nanostructures with moieties for targeting and fluorescence, characterizing their biophysical properties and imaging them using ultrasound and MRI. GVs can be isolated from natural cyanobacterial and haloarchaeal host organisms or from
Escherichia coli
expressing a heterologous GV gene cluster and purified using buoyancy-assisted techniques. They can then be modified by replacing surface-bound proteins with engineered, heterologously expressed variants or through chemical conjugation, resulting in altered mechanical, surface and targeting properties. Pressurized absorbance spectroscopy is used to characterize their mechanical properties, whereas dynamic light scattering (DLS)and transmission electron microscopy (TEM) are used to determine nanoparticle size and morphology, respectively. GVs can then be imaged with ultrasound
in vitro
and
in vivo
using pulse sequences optimized for their detection versus background. They can also be imaged with hyperpolarized xenon MRI using chemical exchange saturation transfer between GV-bound and dissolved xenon—a technique currently implemented
in vitro
. Taking 3–8 d to prepare, these genetically encodable nanostructures enable multimodal, noninvasive biological imaging with high sensitivity and potential for molecular targeting.</description><subject>59/57</subject><subject>631/1647/1511</subject><subject>631/1647/245/1628</subject><subject>631/1647/245/1859</subject><subject>639/638/549/2263</subject><subject>639/925/350/2093</subject><subject>82/80</subject><subject>Absorbance</subject><subject>Analytical Chemistry</subject><subject>Biological Techniques</subject><subject>Buoyancy</subject><subject>Computational Biology/Bioinformatics</subject><subject>Conjugation</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>Contrast Media - chemistry</subject><subject>E coli</subject><subject>Electron microscopy</subject><subject>Escherichia coli</subject><subject>Fluorescence</subject><subject>In vitro methods and tests</subject><subject>Innovations</subject><subject>Life Sciences</subject><subject>Light scattering</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Microarrays</subject><subject>Microscopy, Electron, Transmission</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Organelles</subject><subject>Organic Chemistry</subject><subject>Photon correlation spectroscopy</subject><subject>Physical properties</subject><subject>Properties</subject><subject>Proteins</subject><subject>protocol</subject><subject>Spectroscopy</subject><subject>Transmission electron microscopy</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>Vesicles</subject><subject>Xenon</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctLJDEQxsOyy_rYvXqUwJ57zKuS9FFkH4KiLHoO6XQytMwkY5IW9r8344ziYfEQqkj96qtUPoROKFlQwvVZ3ORUF4xQtSCafkKHVAHpmOr7zy-56BjV_QE6KuWBEKG4VF_RAdNaE6b0IRpvs9_YbOuUIk4BD1Na-jg5vLQFP_kyuZXH0cZUap5dnbMvOKSM5-JxI1yKNdtSsW1ddV9aba_SHEds27n-e_kNfQl2Vfz3fTxG979-3l386a5ufl9enF91DhjUTjCp9UADBztAGKW1kgHpeVAWhAYRiHdD7wAEIT1hMsDI1NjSQGVwXPBj9GOn2z7lcfalmoc059hGGgZSUgES2EcU7bnimoB4p7W0K2-mGFLbyq2n4sw5EKWBK903arGjXE6lZB_MJk9rm_8ZSszWIPNikNkaZJpBreF0P3we1n58w18dacDZDiitFJc-v3vd_yWfAVmhmvw</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Lakshmanan, Anupama</creator><creator>Lu, George J</creator><creator>Farhadi, Arash</creator><creator>Nety, Suchita P</creator><creator>Kunth, Martin</creator><creator>Lee-Gosselin, Audrey</creator><creator>Maresca, David</creator><creator>Bourdeau, Raymond W</creator><creator>Yin, Melissa</creator><creator>Yan, Judy</creator><creator>Witte, Christopher</creator><creator>Malounda, Dina</creator><creator>Foster, F Stuart</creator><creator>Schröder, Leif</creator><creator>Shapiro, Mikhail G</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-0291-4215</orcidid></search><sort><creationdate>20171001</creationdate><title>Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI</title><author>Lakshmanan, Anupama ; Lu, George J ; Farhadi, Arash ; Nety, Suchita P ; Kunth, Martin ; Lee-Gosselin, Audrey ; Maresca, David ; Bourdeau, Raymond W ; Yin, Melissa ; Yan, Judy ; Witte, Christopher ; Malounda, Dina ; Foster, F Stuart ; Schröder, Leif ; Shapiro, Mikhail G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-42688b1f35ab5fd6aa625093f7a54854f0ecb9c554009026f5d27d090f16fc343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>59/57</topic><topic>631/1647/1511</topic><topic>631/1647/245/1628</topic><topic>631/1647/245/1859</topic><topic>639/638/549/2263</topic><topic>639/925/350/2093</topic><topic>82/80</topic><topic>Absorbance</topic><topic>Analytical Chemistry</topic><topic>Biological Techniques</topic><topic>Buoyancy</topic><topic>Computational Biology/Bioinformatics</topic><topic>Conjugation</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>Contrast Media - chemistry</topic><topic>E coli</topic><topic>Electron microscopy</topic><topic>Escherichia coli</topic><topic>Fluorescence</topic><topic>In vitro methods and tests</topic><topic>Innovations</topic><topic>Life Sciences</topic><topic>Light scattering</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Microarrays</topic><topic>Microscopy, Electron, Transmission</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Organelles</topic><topic>Organic Chemistry</topic><topic>Photon correlation spectroscopy</topic><topic>Physical properties</topic><topic>Properties</topic><topic>Proteins</topic><topic>protocol</topic><topic>Spectroscopy</topic><topic>Transmission electron microscopy</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>Vesicles</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakshmanan, Anupama</creatorcontrib><creatorcontrib>Lu, George J</creatorcontrib><creatorcontrib>Farhadi, Arash</creatorcontrib><creatorcontrib>Nety, Suchita P</creatorcontrib><creatorcontrib>Kunth, Martin</creatorcontrib><creatorcontrib>Lee-Gosselin, Audrey</creatorcontrib><creatorcontrib>Maresca, David</creatorcontrib><creatorcontrib>Bourdeau, Raymond W</creatorcontrib><creatorcontrib>Yin, Melissa</creatorcontrib><creatorcontrib>Yan, Judy</creatorcontrib><creatorcontrib>Witte, Christopher</creatorcontrib><creatorcontrib>Malounda, Dina</creatorcontrib><creatorcontrib>Foster, F Stuart</creatorcontrib><creatorcontrib>Schröder, Leif</creatorcontrib><creatorcontrib>Shapiro, Mikhail G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmanan, Anupama</au><au>Lu, George J</au><au>Farhadi, Arash</au><au>Nety, Suchita P</au><au>Kunth, Martin</au><au>Lee-Gosselin, Audrey</au><au>Maresca, David</au><au>Bourdeau, Raymond W</au><au>Yin, Melissa</au><au>Yan, Judy</au><au>Witte, Christopher</au><au>Malounda, Dina</au><au>Foster, F Stuart</au><au>Schröder, Leif</au><au>Shapiro, Mikhail G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>12</volume><issue>10</issue><spage>2050</spage><epage>2080</epage><pages>2050-2080</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>This protocol describes the isolation of gas-filled protein nanostructures, called gas vesicles, their functionalization with moieties for targeting and fluorescence, and how to use them as contrast agents for ultrasound and MRI.
Gas vesicles (GVs) are a unique class of gas-filled protein nanostructures that are detectable at subnanomolar concentrations and whose physical properties allow them to serve as highly sensitive imaging agents for ultrasound and MRI. Here we provide a protocol for isolating GVs from native and heterologous host organisms, functionalizing these nanostructures with moieties for targeting and fluorescence, characterizing their biophysical properties and imaging them using ultrasound and MRI. GVs can be isolated from natural cyanobacterial and haloarchaeal host organisms or from
Escherichia coli
expressing a heterologous GV gene cluster and purified using buoyancy-assisted techniques. They can then be modified by replacing surface-bound proteins with engineered, heterologously expressed variants or through chemical conjugation, resulting in altered mechanical, surface and targeting properties. Pressurized absorbance spectroscopy is used to characterize their mechanical properties, whereas dynamic light scattering (DLS)and transmission electron microscopy (TEM) are used to determine nanoparticle size and morphology, respectively. GVs can then be imaged with ultrasound
in vitro
and
in vivo
using pulse sequences optimized for their detection versus background. They can also be imaged with hyperpolarized xenon MRI using chemical exchange saturation transfer between GV-bound and dissolved xenon—a technique currently implemented
in vitro
. Taking 3–8 d to prepare, these genetically encodable nanostructures enable multimodal, noninvasive biological imaging with high sensitivity and potential for molecular targeting.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28880278</pmid><doi>10.1038/nprot.2017.081</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-0291-4215</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-2189 |
ispartof | Nature protocols, 2017-10, Vol.12 (10), p.2050-2080 |
issn | 1754-2189 1750-2799 |
language | eng |
recordid | cdi_proquest_journals_2566145652 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 59/57 631/1647/1511 631/1647/245/1628 631/1647/245/1859 639/638/549/2263 639/925/350/2093 82/80 Absorbance Analytical Chemistry Biological Techniques Buoyancy Computational Biology/Bioinformatics Conjugation Contrast agents Contrast media Contrast Media - chemistry E coli Electron microscopy Escherichia coli Fluorescence In vitro methods and tests Innovations Life Sciences Light scattering Magnetic resonance imaging Magnetic Resonance Imaging - methods Mechanical properties Methods Microarrays Microscopy, Electron, Transmission Morphology Nanoparticles Nanostructure Nanostructures - chemistry Nanotechnology Organelles Organic Chemistry Photon correlation spectroscopy Physical properties Properties Proteins protocol Spectroscopy Transmission electron microscopy Ultrasonic imaging Ultrasonography - methods Ultrasound Vesicles Xenon |
title | Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20biogenic%20gas%20vesicle%20nanostructures%20for%20use%20as%20contrast%20agents%20for%20ultrasound%20and%20MRI&rft.jtitle=Nature%20protocols&rft.au=Lakshmanan,%20Anupama&rft.date=2017-10-01&rft.volume=12&rft.issue=10&rft.spage=2050&rft.epage=2080&rft.pages=2050-2080&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/nprot.2017.081&rft_dat=%3Cgale_proqu%3EA507853789%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937380544&rft_id=info:pmid/28880278&rft_galeid=A507853789&rfr_iscdi=true |