Review of Progress in Magnetorotational Instability

I will describe the current numerical and experimental approaches for magnetorotational instability which is believed to be the driving mechanism of angular momentum transport in magnetized accretion disk. In the recent computational study, the incorporation of fully anisotropic pressure tensor on h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-04, Vol.1204 (1), p.12097
1. Verfasser: Winarto, Himawan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12097
container_title Journal of physics. Conference series
container_volume 1204
creator Winarto, Himawan
description I will describe the current numerical and experimental approaches for magnetorotational instability which is believed to be the driving mechanism of angular momentum transport in magnetized accretion disk. In the recent computational study, the incorporation of fully anisotropic pressure tensor on hybrid-MHD simulation shows interesting properties in the kinetic regime with low collisionality. The phenomenon can also be investigated further by the laboratory MRI experiments, for example through the use of liquid Galinstan alloy (GaInSn). Unlike observations of astrophysical plasma, laboratory astrophysical experiments can be used to investigate MRI over broad range of parameters with direct diagnostics.
doi_str_mv 10.1088/1742-6596/1204/1/012097
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2566113171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566113171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5899aae078baadc6138881110930c52b2ef42a82fe0b05f3a8cdffecd1ee46423</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-Bgu-CbWZpJf0URYvKysuXp5D2k6WLGtTk6yy_96WiiIIzssZmPMNM4eQU6AXQIVIoEhZnGdlngCjaQIJ7bUs9sjke7L_3QtxSI68X1PK-yomhD_iu8GPyOpo6ezKofeRaaN7tWoxWGeDCsa2ahPNWx9UZTYm7I7JgVYbjydfOiUv11fPs9t48XAzn10u4ppnZYgzUZZKIS1EpVRT58CFEABAS07rjFUMdcqUYBppRTPNlagbrbFuADHNU8an5Gzc2zn7tkUf5NpuXX-MlyzLcwAOBfSuYnTVznrvUMvOmVfldhKoHBKSw-9yyEEOCUmQY0I9yUfS2O5n9f_U-R_U3XL29Nsou0bzT4qydTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566113171</pqid></control><display><type>article</type><title>Review of Progress in Magnetorotational Instability</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Winarto, Himawan</creator><creatorcontrib>Winarto, Himawan</creatorcontrib><description>I will describe the current numerical and experimental approaches for magnetorotational instability which is believed to be the driving mechanism of angular momentum transport in magnetized accretion disk. In the recent computational study, the incorporation of fully anisotropic pressure tensor on hybrid-MHD simulation shows interesting properties in the kinetic regime with low collisionality. The phenomenon can also be investigated further by the laboratory MRI experiments, for example through the use of liquid Galinstan alloy (GaInSn). Unlike observations of astrophysical plasma, laboratory astrophysical experiments can be used to investigate MRI over broad range of parameters with direct diagnostics.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1204/1/012097</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accretion disks ; Angular momentum ; Gallium base alloys ; Laboratories ; Magnetic fields ; Tensors</subject><ispartof>Journal of physics. Conference series, 2019-04, Vol.1204 (1), p.12097</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-5899aae078baadc6138881110930c52b2ef42a82fe0b05f3a8cdffecd1ee46423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1204/1/012097/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Winarto, Himawan</creatorcontrib><title>Review of Progress in Magnetorotational Instability</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>I will describe the current numerical and experimental approaches for magnetorotational instability which is believed to be the driving mechanism of angular momentum transport in magnetized accretion disk. In the recent computational study, the incorporation of fully anisotropic pressure tensor on hybrid-MHD simulation shows interesting properties in the kinetic regime with low collisionality. The phenomenon can also be investigated further by the laboratory MRI experiments, for example through the use of liquid Galinstan alloy (GaInSn). Unlike observations of astrophysical plasma, laboratory astrophysical experiments can be used to investigate MRI over broad range of parameters with direct diagnostics.</description><subject>Accretion disks</subject><subject>Angular momentum</subject><subject>Gallium base alloys</subject><subject>Laboratories</subject><subject>Magnetic fields</subject><subject>Tensors</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkFtLxDAQhYMouK7-Bgu-CbWZpJf0URYvKysuXp5D2k6WLGtTk6yy_96WiiIIzssZmPMNM4eQU6AXQIVIoEhZnGdlngCjaQIJ7bUs9sjke7L_3QtxSI68X1PK-yomhD_iu8GPyOpo6ezKofeRaaN7tWoxWGeDCsa2ahPNWx9UZTYm7I7JgVYbjydfOiUv11fPs9t48XAzn10u4ppnZYgzUZZKIS1EpVRT58CFEABAS07rjFUMdcqUYBppRTPNlagbrbFuADHNU8an5Gzc2zn7tkUf5NpuXX-MlyzLcwAOBfSuYnTVznrvUMvOmVfldhKoHBKSw-9yyEEOCUmQY0I9yUfS2O5n9f_U-R_U3XL29Nsou0bzT4qydTs</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Winarto, Himawan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190401</creationdate><title>Review of Progress in Magnetorotational Instability</title><author>Winarto, Himawan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5899aae078baadc6138881110930c52b2ef42a82fe0b05f3a8cdffecd1ee46423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accretion disks</topic><topic>Angular momentum</topic><topic>Gallium base alloys</topic><topic>Laboratories</topic><topic>Magnetic fields</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winarto, Himawan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winarto, Himawan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of Progress in Magnetorotational Instability</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>1204</volume><issue>1</issue><spage>12097</spage><pages>12097-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>I will describe the current numerical and experimental approaches for magnetorotational instability which is believed to be the driving mechanism of angular momentum transport in magnetized accretion disk. In the recent computational study, the incorporation of fully anisotropic pressure tensor on hybrid-MHD simulation shows interesting properties in the kinetic regime with low collisionality. The phenomenon can also be investigated further by the laboratory MRI experiments, for example through the use of liquid Galinstan alloy (GaInSn). Unlike observations of astrophysical plasma, laboratory astrophysical experiments can be used to investigate MRI over broad range of parameters with direct diagnostics.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1204/1/012097</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2019-04, Vol.1204 (1), p.12097
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2566113171
source Institute of Physics IOPscience extra; IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Accretion disks
Angular momentum
Gallium base alloys
Laboratories
Magnetic fields
Tensors
title Review of Progress in Magnetorotational Instability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20Progress%20in%20Magnetorotational%20Instability&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Winarto,%20Himawan&rft.date=2019-04-01&rft.volume=1204&rft.issue=1&rft.spage=12097&rft.pages=12097-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1204/1/012097&rft_dat=%3Cproquest_iop_j%3E2566113171%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566113171&rft_id=info:pmid/&rfr_iscdi=true