Review of Progress in Magnetorotational Instability
I will describe the current numerical and experimental approaches for magnetorotational instability which is believed to be the driving mechanism of angular momentum transport in magnetized accretion disk. In the recent computational study, the incorporation of fully anisotropic pressure tensor on h...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2019-04, Vol.1204 (1), p.12097 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12097 |
container_title | Journal of physics. Conference series |
container_volume | 1204 |
creator | Winarto, Himawan |
description | I will describe the current numerical and experimental approaches for magnetorotational instability which is believed to be the driving mechanism of angular momentum transport in magnetized accretion disk. In the recent computational study, the incorporation of fully anisotropic pressure tensor on hybrid-MHD simulation shows interesting properties in the kinetic regime with low collisionality. The phenomenon can also be investigated further by the laboratory MRI experiments, for example through the use of liquid Galinstan alloy (GaInSn). Unlike observations of astrophysical plasma, laboratory astrophysical experiments can be used to investigate MRI over broad range of parameters with direct diagnostics. |
doi_str_mv | 10.1088/1742-6596/1204/1/012097 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2566113171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566113171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5899aae078baadc6138881110930c52b2ef42a82fe0b05f3a8cdffecd1ee46423</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-Bgu-CbWZpJf0URYvKysuXp5D2k6WLGtTk6yy_96WiiIIzssZmPMNM4eQU6AXQIVIoEhZnGdlngCjaQIJ7bUs9sjke7L_3QtxSI68X1PK-yomhD_iu8GPyOpo6ezKofeRaaN7tWoxWGeDCsa2ahPNWx9UZTYm7I7JgVYbjydfOiUv11fPs9t48XAzn10u4ppnZYgzUZZKIS1EpVRT58CFEABAS07rjFUMdcqUYBppRTPNlagbrbFuADHNU8an5Gzc2zn7tkUf5NpuXX-MlyzLcwAOBfSuYnTVznrvUMvOmVfldhKoHBKSw-9yyEEOCUmQY0I9yUfS2O5n9f_U-R_U3XL29Nsou0bzT4qydTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566113171</pqid></control><display><type>article</type><title>Review of Progress in Magnetorotational Instability</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Winarto, Himawan</creator><creatorcontrib>Winarto, Himawan</creatorcontrib><description>I will describe the current numerical and experimental approaches for magnetorotational instability which is believed to be the driving mechanism of angular momentum transport in magnetized accretion disk. In the recent computational study, the incorporation of fully anisotropic pressure tensor on hybrid-MHD simulation shows interesting properties in the kinetic regime with low collisionality. The phenomenon can also be investigated further by the laboratory MRI experiments, for example through the use of liquid Galinstan alloy (GaInSn). Unlike observations of astrophysical plasma, laboratory astrophysical experiments can be used to investigate MRI over broad range of parameters with direct diagnostics.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1204/1/012097</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accretion disks ; Angular momentum ; Gallium base alloys ; Laboratories ; Magnetic fields ; Tensors</subject><ispartof>Journal of physics. Conference series, 2019-04, Vol.1204 (1), p.12097</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-5899aae078baadc6138881110930c52b2ef42a82fe0b05f3a8cdffecd1ee46423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1204/1/012097/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Winarto, Himawan</creatorcontrib><title>Review of Progress in Magnetorotational Instability</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>I will describe the current numerical and experimental approaches for magnetorotational instability which is believed to be the driving mechanism of angular momentum transport in magnetized accretion disk. In the recent computational study, the incorporation of fully anisotropic pressure tensor on hybrid-MHD simulation shows interesting properties in the kinetic regime with low collisionality. The phenomenon can also be investigated further by the laboratory MRI experiments, for example through the use of liquid Galinstan alloy (GaInSn). Unlike observations of astrophysical plasma, laboratory astrophysical experiments can be used to investigate MRI over broad range of parameters with direct diagnostics.</description><subject>Accretion disks</subject><subject>Angular momentum</subject><subject>Gallium base alloys</subject><subject>Laboratories</subject><subject>Magnetic fields</subject><subject>Tensors</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkFtLxDAQhYMouK7-Bgu-CbWZpJf0URYvKysuXp5D2k6WLGtTk6yy_96WiiIIzssZmPMNM4eQU6AXQIVIoEhZnGdlngCjaQIJ7bUs9sjke7L_3QtxSI68X1PK-yomhD_iu8GPyOpo6ezKofeRaaN7tWoxWGeDCsa2ahPNWx9UZTYm7I7JgVYbjydfOiUv11fPs9t48XAzn10u4ppnZYgzUZZKIS1EpVRT58CFEABAS07rjFUMdcqUYBppRTPNlagbrbFuADHNU8an5Gzc2zn7tkUf5NpuXX-MlyzLcwAOBfSuYnTVznrvUMvOmVfldhKoHBKSw-9yyEEOCUmQY0I9yUfS2O5n9f_U-R_U3XL29Nsou0bzT4qydTs</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Winarto, Himawan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190401</creationdate><title>Review of Progress in Magnetorotational Instability</title><author>Winarto, Himawan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5899aae078baadc6138881110930c52b2ef42a82fe0b05f3a8cdffecd1ee46423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accretion disks</topic><topic>Angular momentum</topic><topic>Gallium base alloys</topic><topic>Laboratories</topic><topic>Magnetic fields</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winarto, Himawan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winarto, Himawan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of Progress in Magnetorotational Instability</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>1204</volume><issue>1</issue><spage>12097</spage><pages>12097-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>I will describe the current numerical and experimental approaches for magnetorotational instability which is believed to be the driving mechanism of angular momentum transport in magnetized accretion disk. In the recent computational study, the incorporation of fully anisotropic pressure tensor on hybrid-MHD simulation shows interesting properties in the kinetic regime with low collisionality. The phenomenon can also be investigated further by the laboratory MRI experiments, for example through the use of liquid Galinstan alloy (GaInSn). Unlike observations of astrophysical plasma, laboratory astrophysical experiments can be used to investigate MRI over broad range of parameters with direct diagnostics.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1204/1/012097</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2019-04, Vol.1204 (1), p.12097 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2566113171 |
source | Institute of Physics IOPscience extra; IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Accretion disks Angular momentum Gallium base alloys Laboratories Magnetic fields Tensors |
title | Review of Progress in Magnetorotational Instability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20Progress%20in%20Magnetorotational%20Instability&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Winarto,%20Himawan&rft.date=2019-04-01&rft.volume=1204&rft.issue=1&rft.spage=12097&rft.pages=12097-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1204/1/012097&rft_dat=%3Cproquest_iop_j%3E2566113171%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566113171&rft_id=info:pmid/&rfr_iscdi=true |