Neutronic analysis of VVER-1000 fuel assembly with different types of burnable absorbers using Monte-Carlo code Serpent
A neutronic study on the fuel assembly of a Russian type nuclear reactor VVER-1000 fuelled with low enriched Uranium (LEU) plus 12 UO2+4%Gd2O3 rods was performed. This type of fuel requires validated computational methods and codes able to provide reliable predictions of the neutronics characteristi...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2019-03, Vol.1189 (1), p.12002 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12002 |
container_title | Journal of physics. Conference series |
container_volume | 1189 |
creator | Khrais, R A Tikhomirov, G V Saldikov, I S Smirnov, A D |
description | A neutronic study on the fuel assembly of a Russian type nuclear reactor VVER-1000 fuelled with low enriched Uranium (LEU) plus 12 UO2+4%Gd2O3 rods was performed. This type of fuel requires validated computational methods and codes able to provide reliable predictions of the neutronics characteristics. Gadolinium self-shielding effect and isotopes accumulation in Rim region make it necessary to study the geometric modelling effect on the code calculations. The modelling of this fuel type was tested using Monte-Carlo and deterministic codes. In this study, Serpent results are verified using two nuclear data libraries ENDFb.6.8 and ENDFb.7. Also, this study investigates the effect UGd rods division into multiple radial layers on the reactivity, isotopic generation and burnup radial distribution. The same procedure is done on another type of neutron absorber Erbium (UEr) and the results are compared with UGd. The sensitivity of the results determines the validity of Monte-Carlo code in such a computational task comparing two types of neutron absorbers in addition to determining the geometric requirements. |
doi_str_mv | 10.1088/1742-6596/1189/1/012002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2566064644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566064644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3282-d4f7b9e84ef26c3b8cae6ebf95dfa2c24622c2087af16d1846b90d86fb87c81e3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKe_wYB3Qm2Sdml6KWV-MT9wutuQtCfa0TU1aRn997ZWJoJgLpID531ewuN5pwRfEMx5QOKI-myWsIAQngQkwIRiTPe8yW6zv5s5P_SOnFtjHPYnnnjbB2gba6oiQ7KSZecKh4xGq9X82ScYY6RbKJF0Djaq7NC2aN5RXmgNFqoGNV0NX3nV2kqqEpBUzlgF1qHWFdUbujdVA34qbWlQZnJAS7B1jx57B1qWDk6-36n3ejV_SW_8xeP1bXq58LOQcurnkY5VAjwCTVkWKp5JYKB0Msu1pBmNGO1vzGOpCcsJj5hKcM6ZVjzOOIFw6p2NvbU1Hy24RqzN8NfSCTpjDLOIRVGfisdUZo1zFrSobbGRthMEi8GyGPyJwaUYLAsiRss9GY5kYeqf6v-p8z-ou6d0-Tso6lyHn2BnjUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566064644</pqid></control><display><type>article</type><title>Neutronic analysis of VVER-1000 fuel assembly with different types of burnable absorbers using Monte-Carlo code Serpent</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Khrais, R A ; Tikhomirov, G V ; Saldikov, I S ; Smirnov, A D</creator><creatorcontrib>Khrais, R A ; Tikhomirov, G V ; Saldikov, I S ; Smirnov, A D</creatorcontrib><description>A neutronic study on the fuel assembly of a Russian type nuclear reactor VVER-1000 fuelled with low enriched Uranium (LEU) plus 12 UO2+4%Gd2O3 rods was performed. This type of fuel requires validated computational methods and codes able to provide reliable predictions of the neutronics characteristics. Gadolinium self-shielding effect and isotopes accumulation in Rim region make it necessary to study the geometric modelling effect on the code calculations. The modelling of this fuel type was tested using Monte-Carlo and deterministic codes. In this study, Serpent results are verified using two nuclear data libraries ENDFb.6.8 and ENDFb.7. Also, this study investigates the effect UGd rods division into multiple radial layers on the reactivity, isotopic generation and burnup radial distribution. The same procedure is done on another type of neutron absorber Erbium (UEr) and the results are compared with UGd. The sensitivity of the results determines the validity of Monte-Carlo code in such a computational task comparing two types of neutron absorbers in addition to determining the geometric requirements.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1189/1/012002</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Assembly ; Enriched fuel reactors ; Erbium ; Fuels ; Gadolinium ; Gadolinium oxides ; Monte Carlo simulation ; Neutron absorbers ; Nuclear fuels ; Nuclear reactors ; Radial distribution ; Rods ; Shielding ; Uranium ; Uranium dioxide</subject><ispartof>Journal of physics. Conference series, 2019-03, Vol.1189 (1), p.12002</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3282-d4f7b9e84ef26c3b8cae6ebf95dfa2c24622c2087af16d1846b90d86fb87c81e3</citedby><cites>FETCH-LOGICAL-c3282-d4f7b9e84ef26c3b8cae6ebf95dfa2c24622c2087af16d1846b90d86fb87c81e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1189/1/012002/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Khrais, R A</creatorcontrib><creatorcontrib>Tikhomirov, G V</creatorcontrib><creatorcontrib>Saldikov, I S</creatorcontrib><creatorcontrib>Smirnov, A D</creatorcontrib><title>Neutronic analysis of VVER-1000 fuel assembly with different types of burnable absorbers using Monte-Carlo code Serpent</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>A neutronic study on the fuel assembly of a Russian type nuclear reactor VVER-1000 fuelled with low enriched Uranium (LEU) plus 12 UO2+4%Gd2O3 rods was performed. This type of fuel requires validated computational methods and codes able to provide reliable predictions of the neutronics characteristics. Gadolinium self-shielding effect and isotopes accumulation in Rim region make it necessary to study the geometric modelling effect on the code calculations. The modelling of this fuel type was tested using Monte-Carlo and deterministic codes. In this study, Serpent results are verified using two nuclear data libraries ENDFb.6.8 and ENDFb.7. Also, this study investigates the effect UGd rods division into multiple radial layers on the reactivity, isotopic generation and burnup radial distribution. The same procedure is done on another type of neutron absorber Erbium (UEr) and the results are compared with UGd. The sensitivity of the results determines the validity of Monte-Carlo code in such a computational task comparing two types of neutron absorbers in addition to determining the geometric requirements.</description><subject>Assembly</subject><subject>Enriched fuel reactors</subject><subject>Erbium</subject><subject>Fuels</subject><subject>Gadolinium</subject><subject>Gadolinium oxides</subject><subject>Monte Carlo simulation</subject><subject>Neutron absorbers</subject><subject>Nuclear fuels</subject><subject>Nuclear reactors</subject><subject>Radial distribution</subject><subject>Rods</subject><subject>Shielding</subject><subject>Uranium</subject><subject>Uranium dioxide</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKe_wYB3Qm2Sdml6KWV-MT9wutuQtCfa0TU1aRn997ZWJoJgLpID531ewuN5pwRfEMx5QOKI-myWsIAQngQkwIRiTPe8yW6zv5s5P_SOnFtjHPYnnnjbB2gba6oiQ7KSZecKh4xGq9X82ScYY6RbKJF0Djaq7NC2aN5RXmgNFqoGNV0NX3nV2kqqEpBUzlgF1qHWFdUbujdVA34qbWlQZnJAS7B1jx57B1qWDk6-36n3ejV_SW_8xeP1bXq58LOQcurnkY5VAjwCTVkWKp5JYKB0Msu1pBmNGO1vzGOpCcsJj5hKcM6ZVjzOOIFw6p2NvbU1Hy24RqzN8NfSCTpjDLOIRVGfisdUZo1zFrSobbGRthMEi8GyGPyJwaUYLAsiRss9GY5kYeqf6v-p8z-ou6d0-Tso6lyHn2BnjUI</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Khrais, R A</creator><creator>Tikhomirov, G V</creator><creator>Saldikov, I S</creator><creator>Smirnov, A D</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190301</creationdate><title>Neutronic analysis of VVER-1000 fuel assembly with different types of burnable absorbers using Monte-Carlo code Serpent</title><author>Khrais, R A ; Tikhomirov, G V ; Saldikov, I S ; Smirnov, A D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3282-d4f7b9e84ef26c3b8cae6ebf95dfa2c24622c2087af16d1846b90d86fb87c81e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assembly</topic><topic>Enriched fuel reactors</topic><topic>Erbium</topic><topic>Fuels</topic><topic>Gadolinium</topic><topic>Gadolinium oxides</topic><topic>Monte Carlo simulation</topic><topic>Neutron absorbers</topic><topic>Nuclear fuels</topic><topic>Nuclear reactors</topic><topic>Radial distribution</topic><topic>Rods</topic><topic>Shielding</topic><topic>Uranium</topic><topic>Uranium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khrais, R A</creatorcontrib><creatorcontrib>Tikhomirov, G V</creatorcontrib><creatorcontrib>Saldikov, I S</creatorcontrib><creatorcontrib>Smirnov, A D</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khrais, R A</au><au>Tikhomirov, G V</au><au>Saldikov, I S</au><au>Smirnov, A D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutronic analysis of VVER-1000 fuel assembly with different types of burnable absorbers using Monte-Carlo code Serpent</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>1189</volume><issue>1</issue><spage>12002</spage><pages>12002-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>A neutronic study on the fuel assembly of a Russian type nuclear reactor VVER-1000 fuelled with low enriched Uranium (LEU) plus 12 UO2+4%Gd2O3 rods was performed. This type of fuel requires validated computational methods and codes able to provide reliable predictions of the neutronics characteristics. Gadolinium self-shielding effect and isotopes accumulation in Rim region make it necessary to study the geometric modelling effect on the code calculations. The modelling of this fuel type was tested using Monte-Carlo and deterministic codes. In this study, Serpent results are verified using two nuclear data libraries ENDFb.6.8 and ENDFb.7. Also, this study investigates the effect UGd rods division into multiple radial layers on the reactivity, isotopic generation and burnup radial distribution. The same procedure is done on another type of neutron absorber Erbium (UEr) and the results are compared with UGd. The sensitivity of the results determines the validity of Monte-Carlo code in such a computational task comparing two types of neutron absorbers in addition to determining the geometric requirements.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1189/1/012002</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2019-03, Vol.1189 (1), p.12002 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2566064644 |
source | IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Assembly Enriched fuel reactors Erbium Fuels Gadolinium Gadolinium oxides Monte Carlo simulation Neutron absorbers Nuclear fuels Nuclear reactors Radial distribution Rods Shielding Uranium Uranium dioxide |
title | Neutronic analysis of VVER-1000 fuel assembly with different types of burnable absorbers using Monte-Carlo code Serpent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutronic%20analysis%20of%20VVER-1000%20fuel%20assembly%20with%20different%20types%20of%20burnable%20absorbers%20using%20Monte-Carlo%20code%20Serpent&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Khrais,%20R%20A&rft.date=2019-03-01&rft.volume=1189&rft.issue=1&rft.spage=12002&rft.pages=12002-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1189/1/012002&rft_dat=%3Cproquest_iop_j%3E2566064644%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566064644&rft_id=info:pmid/&rfr_iscdi=true |