Numerical simulation and experimental verification of dry pressed MgTiO3 ceramic body during pressureless sintering

To clarify the densification law of dry pressed MgTiO3 ceramic body during pressureless sintering, SOVS model (Skorohod‐Olevsky Viscous Sintering model) modified with creep characteristics was embedded into finite element software Abaqus. The selected model can effectively express the grain boundary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2021-09, Vol.104 (9), p.4408-4419
Hauptverfasser: Wang, Jiang, Ni, Yu, Liu, Kai, Du, Yanying, Liu, Wei, Wang, Zijian, Huang, Shangyu, Sun, Huajun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4419
container_issue 9
container_start_page 4408
container_title Journal of the American Ceramic Society
container_volume 104
creator Wang, Jiang
Ni, Yu
Liu, Kai
Du, Yanying
Liu, Wei
Wang, Zijian
Huang, Shangyu
Sun, Huajun
description To clarify the densification law of dry pressed MgTiO3 ceramic body during pressureless sintering, SOVS model (Skorohod‐Olevsky Viscous Sintering model) modified with creep characteristics was embedded into finite element software Abaqus. The selected model can effectively express the grain boundary characteristics and densification mechanism. The change law of relative density, shrinkage rate, sintering stress, and grain size of MgTiO3 cylindrical specimens was investigated by the above numerical simulation method. It showed that the average relative density of ceramic body rose from 60% to 97%, and the shrinkage rate respectively reached 17.28% and 11.99% in axial and radial direction. The average grain size increased from 1 to 6 μm. In order to verify the accuracy of the simulation results, corresponding sintering experiments on cylindrical specimens were carried out to obtain actual sintering densities and shrinkage rates. It showed that the errors of relative density and shrinkage were below 5% and 2%. Grain growth trend was also basically consistent with the simulation results. After that, the above numerical simulation method was applied into the prediction of fabricating MgTiO3 filter with complex structure. Therefore, the present work provided a reliable numerical simulation method to predict the densification behavior of MgTiO3 ceramics during the pressureless sintering process, which was helpful to design and fabricate microwave dielectric products.
doi_str_mv 10.1111/jace.17888
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2566043268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566043268</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2258-bdd32d110ab6291e673b321b2b06dbba0054b6d682eace43ca41f1061c100b733</originalsourceid><addsrcrecordid>eNotUMtOwzAQtBBIlMKFL7DEOcVrJ457rKryUqGXcrbs2Klc5YWdAPl73Ia97GNGs5pB6B7IAmI9HlVhF5ALIS7QDLIMEroEfolmhBCa5IKSa3QTwjGusBTpDIWPobbeFarCwdVDpXrXNlg1BtvfLgK1bfqIfcexjKwz2pbY-BF33oZgDX4_7N2O4cJ6VbsC69aM2AzeNYeJMnhbxRb1m96ezrfoqlRVsHf_fY4-nzb79Uuy3T2_rlfbpKM0E4k2hlEDQJTm0YXlOdOMgqaacKO1IiRLNTdcUBtdp6xQKZRAOBRAiM4Zm6OHSbfz7ddgQy-P7eCb-FLSjHOSMspFZMHE-nGVHWUXPSs_SiDylKg8JSrPicq31XpzntgfRrltoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566043268</pqid></control><display><type>article</type><title>Numerical simulation and experimental verification of dry pressed MgTiO3 ceramic body during pressureless sintering</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Jiang ; Ni, Yu ; Liu, Kai ; Du, Yanying ; Liu, Wei ; Wang, Zijian ; Huang, Shangyu ; Sun, Huajun</creator><creatorcontrib>Wang, Jiang ; Ni, Yu ; Liu, Kai ; Du, Yanying ; Liu, Wei ; Wang, Zijian ; Huang, Shangyu ; Sun, Huajun</creatorcontrib><description>To clarify the densification law of dry pressed MgTiO3 ceramic body during pressureless sintering, SOVS model (Skorohod‐Olevsky Viscous Sintering model) modified with creep characteristics was embedded into finite element software Abaqus. The selected model can effectively express the grain boundary characteristics and densification mechanism. The change law of relative density, shrinkage rate, sintering stress, and grain size of MgTiO3 cylindrical specimens was investigated by the above numerical simulation method. It showed that the average relative density of ceramic body rose from 60% to 97%, and the shrinkage rate respectively reached 17.28% and 11.99% in axial and radial direction. The average grain size increased from 1 to 6 μm. In order to verify the accuracy of the simulation results, corresponding sintering experiments on cylindrical specimens were carried out to obtain actual sintering densities and shrinkage rates. It showed that the errors of relative density and shrinkage were below 5% and 2%. Grain growth trend was also basically consistent with the simulation results. After that, the above numerical simulation method was applied into the prediction of fabricating MgTiO3 filter with complex structure. Therefore, the present work provided a reliable numerical simulation method to predict the densification behavior of MgTiO3 ceramics during the pressureless sintering process, which was helpful to design and fabricate microwave dielectric products.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17888</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Ceramics ; Computer simulation ; Creep (materials) ; Densification ; Density ; Finite element method ; Grain boundaries ; Grain growth ; Grain size ; Loose powder sintering ; Magnesium titanates ; Mathematical models ; MgTiO3 ; numerical simulation ; pressureless sintering ; Shrinkage ; Simulation ; Sintering ; SOVS model</subject><ispartof>Journal of the American Ceramic Society, 2021-09, Vol.104 (9), p.4408-4419</ispartof><rights>2021 The American Ceramic Society</rights><rights>2021 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5856-8227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17888$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17888$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Ni, Yu</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Du, Yanying</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Zijian</creatorcontrib><creatorcontrib>Huang, Shangyu</creatorcontrib><creatorcontrib>Sun, Huajun</creatorcontrib><title>Numerical simulation and experimental verification of dry pressed MgTiO3 ceramic body during pressureless sintering</title><title>Journal of the American Ceramic Society</title><description>To clarify the densification law of dry pressed MgTiO3 ceramic body during pressureless sintering, SOVS model (Skorohod‐Olevsky Viscous Sintering model) modified with creep characteristics was embedded into finite element software Abaqus. The selected model can effectively express the grain boundary characteristics and densification mechanism. The change law of relative density, shrinkage rate, sintering stress, and grain size of MgTiO3 cylindrical specimens was investigated by the above numerical simulation method. It showed that the average relative density of ceramic body rose from 60% to 97%, and the shrinkage rate respectively reached 17.28% and 11.99% in axial and radial direction. The average grain size increased from 1 to 6 μm. In order to verify the accuracy of the simulation results, corresponding sintering experiments on cylindrical specimens were carried out to obtain actual sintering densities and shrinkage rates. It showed that the errors of relative density and shrinkage were below 5% and 2%. Grain growth trend was also basically consistent with the simulation results. After that, the above numerical simulation method was applied into the prediction of fabricating MgTiO3 filter with complex structure. Therefore, the present work provided a reliable numerical simulation method to predict the densification behavior of MgTiO3 ceramics during the pressureless sintering process, which was helpful to design and fabricate microwave dielectric products.</description><subject>Ceramics</subject><subject>Computer simulation</subject><subject>Creep (materials)</subject><subject>Densification</subject><subject>Density</subject><subject>Finite element method</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Loose powder sintering</subject><subject>Magnesium titanates</subject><subject>Mathematical models</subject><subject>MgTiO3</subject><subject>numerical simulation</subject><subject>pressureless sintering</subject><subject>Shrinkage</subject><subject>Simulation</subject><subject>Sintering</subject><subject>SOVS model</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotUMtOwzAQtBBIlMKFL7DEOcVrJ457rKryUqGXcrbs2Klc5YWdAPl73Ia97GNGs5pB6B7IAmI9HlVhF5ALIS7QDLIMEroEfolmhBCa5IKSa3QTwjGusBTpDIWPobbeFarCwdVDpXrXNlg1BtvfLgK1bfqIfcexjKwz2pbY-BF33oZgDX4_7N2O4cJ6VbsC69aM2AzeNYeJMnhbxRb1m96ezrfoqlRVsHf_fY4-nzb79Uuy3T2_rlfbpKM0E4k2hlEDQJTm0YXlOdOMgqaacKO1IiRLNTdcUBtdp6xQKZRAOBRAiM4Zm6OHSbfz7ddgQy-P7eCb-FLSjHOSMspFZMHE-nGVHWUXPSs_SiDylKg8JSrPicq31XpzntgfRrltoQ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Wang, Jiang</creator><creator>Ni, Yu</creator><creator>Liu, Kai</creator><creator>Du, Yanying</creator><creator>Liu, Wei</creator><creator>Wang, Zijian</creator><creator>Huang, Shangyu</creator><creator>Sun, Huajun</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5856-8227</orcidid></search><sort><creationdate>202109</creationdate><title>Numerical simulation and experimental verification of dry pressed MgTiO3 ceramic body during pressureless sintering</title><author>Wang, Jiang ; Ni, Yu ; Liu, Kai ; Du, Yanying ; Liu, Wei ; Wang, Zijian ; Huang, Shangyu ; Sun, Huajun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2258-bdd32d110ab6291e673b321b2b06dbba0054b6d682eace43ca41f1061c100b733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ceramics</topic><topic>Computer simulation</topic><topic>Creep (materials)</topic><topic>Densification</topic><topic>Density</topic><topic>Finite element method</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Loose powder sintering</topic><topic>Magnesium titanates</topic><topic>Mathematical models</topic><topic>MgTiO3</topic><topic>numerical simulation</topic><topic>pressureless sintering</topic><topic>Shrinkage</topic><topic>Simulation</topic><topic>Sintering</topic><topic>SOVS model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Ni, Yu</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Du, Yanying</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Zijian</creatorcontrib><creatorcontrib>Huang, Shangyu</creatorcontrib><creatorcontrib>Sun, Huajun</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiang</au><au>Ni, Yu</au><au>Liu, Kai</au><au>Du, Yanying</au><au>Liu, Wei</au><au>Wang, Zijian</au><au>Huang, Shangyu</au><au>Sun, Huajun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation and experimental verification of dry pressed MgTiO3 ceramic body during pressureless sintering</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2021-09</date><risdate>2021</risdate><volume>104</volume><issue>9</issue><spage>4408</spage><epage>4419</epage><pages>4408-4419</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>To clarify the densification law of dry pressed MgTiO3 ceramic body during pressureless sintering, SOVS model (Skorohod‐Olevsky Viscous Sintering model) modified with creep characteristics was embedded into finite element software Abaqus. The selected model can effectively express the grain boundary characteristics and densification mechanism. The change law of relative density, shrinkage rate, sintering stress, and grain size of MgTiO3 cylindrical specimens was investigated by the above numerical simulation method. It showed that the average relative density of ceramic body rose from 60% to 97%, and the shrinkage rate respectively reached 17.28% and 11.99% in axial and radial direction. The average grain size increased from 1 to 6 μm. In order to verify the accuracy of the simulation results, corresponding sintering experiments on cylindrical specimens were carried out to obtain actual sintering densities and shrinkage rates. It showed that the errors of relative density and shrinkage were below 5% and 2%. Grain growth trend was also basically consistent with the simulation results. After that, the above numerical simulation method was applied into the prediction of fabricating MgTiO3 filter with complex structure. Therefore, the present work provided a reliable numerical simulation method to predict the densification behavior of MgTiO3 ceramics during the pressureless sintering process, which was helpful to design and fabricate microwave dielectric products.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17888</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5856-8227</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2021-09, Vol.104 (9), p.4408-4419
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2566043268
source Wiley Online Library Journals Frontfile Complete
subjects Ceramics
Computer simulation
Creep (materials)
Densification
Density
Finite element method
Grain boundaries
Grain growth
Grain size
Loose powder sintering
Magnesium titanates
Mathematical models
MgTiO3
numerical simulation
pressureless sintering
Shrinkage
Simulation
Sintering
SOVS model
title Numerical simulation and experimental verification of dry pressed MgTiO3 ceramic body during pressureless sintering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20and%20experimental%20verification%20of%20dry%20pressed%20MgTiO3%20ceramic%20body%20during%20pressureless%20sintering&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Wang,%20Jiang&rft.date=2021-09&rft.volume=104&rft.issue=9&rft.spage=4408&rft.epage=4419&rft.pages=4408-4419&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17888&rft_dat=%3Cproquest_wiley%3E2566043268%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566043268&rft_id=info:pmid/&rfr_iscdi=true