An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model

(1) Background: As diabetes melllitus (DM) can affect the microvasculature, this study evaluates different clinical parameters and the vascular density of ocular surface microvasculature in diabetic patients. (2) Methods: In this cross-sectional study, red-free conjunctival photographs of diabetic i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2021-04, Vol.18 (7), p.3735, Article 3735
Hauptverfasser: Boroumand, Farzaneh, Shakeri, Mohammad Taghi, Banaee, Touka, Pourreza, Hamidreza, Doosti, Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 3735
container_title International journal of environmental research and public health
container_volume 18
creator Boroumand, Farzaneh
Shakeri, Mohammad Taghi
Banaee, Touka
Pourreza, Hamidreza
Doosti, Hassan
description (1) Background: As diabetes melllitus (DM) can affect the microvasculature, this study evaluates different clinical parameters and the vascular density of ocular surface microvasculature in diabetic patients. (2) Methods: In this cross-sectional study, red-free conjunctival photographs of diabetic individuals aged 30-60 were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The Areas Occupied by Vessels (AOV) images of different diameters were calculated. To establish the sum of AOV of different sized vessels. We adopt a novel approach to investigate the association between clinical characteristics as the predictors and AOV as the outcome, that is Tilted Additive Model (TAM). We use a tilted nonparametric regression estimator to estimate the nonlinear effect of predictors on the outcome in the additive setting for the first time. (3) Results: The results show Age (p-value = 0.019) and Mean Arterial Pressure (MAP) have a significant linear effect on AOV (p-value = 0.034). We also find a nonlinear association between Body Mass Index (BMI), daily Urinary Protein Excretion (UPE), Hemoglobin A1C, and Blood Urea Nitrogen (BUN) with AOV. (4) Conclusions: As many predictors do not have a linear relationship with the outcome, we conclude that the TAM will help better elucidate the effect of the different predictors. The highest level of AOV can be seen at Hemoglobin A1C of 9% and AOV increases when the daily UPE exceeds 600 mg. These effects need to be considered in future studies of ocular surface vessels of diabetic patients.
doi_str_mv 10.3390/ijerph18073735
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2566038601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520864633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-424c8486782f8a0492a0247fba7db1aa15d75cbbe106b572fdbec04b4978e55a3</originalsourceid><addsrcrecordid>eNqNkc1uEzEUhS0EoiWwZYkssUFCKfbYM-OwqDQKv1IhSBS2o2vPHeLIGQ-2pyhvwSPjNCVqWbHylf2do3N9CHnK2ZkQC_bKbjCMa65YLWpR3iOnvKrYXFaM3781n5BHMW4YE0pWi4fkJEu5kgU7Jb-bgTYDuF20kfqepjXSJiBEujJmGi12VO_od4wRXaR2uAZWZnIQ6Ncp9GBwL3tjQWOyhn6BZHFI8TXdG4-jsybf-GEPAf3shxECbDGFzF5al7J_03U22Sukn3yH7jF50IOL-OTmnJFv795eLj_ML1bvPy6bi7nJi6a5LKRRUlW1KnoFTC4KYIWsew11pzkAL7u6NFojZ5Uu66LvNBomtVzUCssSxIycH3zHSW-xMzl0ANeOwW4h7FoPtr37Mth1-8NftSr_YpEzzMiLG4Pgf04YU7u10aBzMKCfYluUBVOVrITI6PN_0I2fQv71PZU7Eip3lKmzA2WCjzFgfwzDWbsvu71bdhY8u73CEf_bbgbUAfiF2vfR5GYMHjHGWCVUTsnzxPjSpuumln4aUpa-_H-p-AOjXsgf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566038601</pqid></control><display><type>article</type><title>An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Web of Science - Social Sciences Citation Index – 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Free Full-Text Journals in Chemistry</source><creator>Boroumand, Farzaneh ; Shakeri, Mohammad Taghi ; Banaee, Touka ; Pourreza, Hamidreza ; Doosti, Hassan</creator><creatorcontrib>Boroumand, Farzaneh ; Shakeri, Mohammad Taghi ; Banaee, Touka ; Pourreza, Hamidreza ; Doosti, Hassan</creatorcontrib><description>(1) Background: As diabetes melllitus (DM) can affect the microvasculature, this study evaluates different clinical parameters and the vascular density of ocular surface microvasculature in diabetic patients. (2) Methods: In this cross-sectional study, red-free conjunctival photographs of diabetic individuals aged 30-60 were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The Areas Occupied by Vessels (AOV) images of different diameters were calculated. To establish the sum of AOV of different sized vessels. We adopt a novel approach to investigate the association between clinical characteristics as the predictors and AOV as the outcome, that is Tilted Additive Model (TAM). We use a tilted nonparametric regression estimator to estimate the nonlinear effect of predictors on the outcome in the additive setting for the first time. (3) Results: The results show Age (p-value = 0.019) and Mean Arterial Pressure (MAP) have a significant linear effect on AOV (p-value = 0.034). We also find a nonlinear association between Body Mass Index (BMI), daily Urinary Protein Excretion (UPE), Hemoglobin A1C, and Blood Urea Nitrogen (BUN) with AOV. (4) Conclusions: As many predictors do not have a linear relationship with the outcome, we conclude that the TAM will help better elucidate the effect of the different predictors. The highest level of AOV can be seen at Hemoglobin A1C of 9% and AOV increases when the daily UPE exceeds 600 mg. These effects need to be considered in future studies of ocular surface vessels of diabetic patients.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph18073735</identifier><identifier>PMID: 33918420</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Adult ; Algorithms ; Blood pressure ; Body mass ; Body mass index ; Body size ; Cameras ; Cornea ; Creatinine ; Cross-Sectional Studies ; Diabetes ; Diabetes Mellitus ; Diabetic retinopathy ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; Eye - blood supply ; Generalized linear models ; Glycated Hemoglobin ; Hemoglobin ; Humans ; Hypertension ; Life Sciences &amp; Biomedicine ; Microvasculature ; Middle Aged ; Nonparametric statistics ; Patients ; Photography ; Public, Environmental &amp; Occupational Health ; Radon ; Science &amp; Technology ; Statistical analysis ; Statistical methods ; Urea</subject><ispartof>International journal of environmental research and public health, 2021-04, Vol.18 (7), p.3735, Article 3735</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000638520100001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c373t-424c8486782f8a0492a0247fba7db1aa15d75cbbe106b572fdbec04b4978e55a3</cites><orcidid>0000-0003-2972-3969 ; 0000-0002-3560-8070 ; 0000-0002-0290-8122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038237/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038237/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39262,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33918420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boroumand, Farzaneh</creatorcontrib><creatorcontrib>Shakeri, Mohammad Taghi</creatorcontrib><creatorcontrib>Banaee, Touka</creatorcontrib><creatorcontrib>Pourreza, Hamidreza</creatorcontrib><creatorcontrib>Doosti, Hassan</creatorcontrib><title>An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model</title><title>International journal of environmental research and public health</title><addtitle>INT J ENV RES PUB HE</addtitle><addtitle>Int J Environ Res Public Health</addtitle><description>(1) Background: As diabetes melllitus (DM) can affect the microvasculature, this study evaluates different clinical parameters and the vascular density of ocular surface microvasculature in diabetic patients. (2) Methods: In this cross-sectional study, red-free conjunctival photographs of diabetic individuals aged 30-60 were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The Areas Occupied by Vessels (AOV) images of different diameters were calculated. To establish the sum of AOV of different sized vessels. We adopt a novel approach to investigate the association between clinical characteristics as the predictors and AOV as the outcome, that is Tilted Additive Model (TAM). We use a tilted nonparametric regression estimator to estimate the nonlinear effect of predictors on the outcome in the additive setting for the first time. (3) Results: The results show Age (p-value = 0.019) and Mean Arterial Pressure (MAP) have a significant linear effect on AOV (p-value = 0.034). We also find a nonlinear association between Body Mass Index (BMI), daily Urinary Protein Excretion (UPE), Hemoglobin A1C, and Blood Urea Nitrogen (BUN) with AOV. (4) Conclusions: As many predictors do not have a linear relationship with the outcome, we conclude that the TAM will help better elucidate the effect of the different predictors. The highest level of AOV can be seen at Hemoglobin A1C of 9% and AOV increases when the daily UPE exceeds 600 mg. These effects need to be considered in future studies of ocular surface vessels of diabetic patients.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Blood pressure</subject><subject>Body mass</subject><subject>Body mass index</subject><subject>Body size</subject><subject>Cameras</subject><subject>Cornea</subject><subject>Creatinine</subject><subject>Cross-Sectional Studies</subject><subject>Diabetes</subject><subject>Diabetes Mellitus</subject><subject>Diabetic retinopathy</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Eye - blood supply</subject><subject>Generalized linear models</subject><subject>Glycated Hemoglobin</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Microvasculature</subject><subject>Middle Aged</subject><subject>Nonparametric statistics</subject><subject>Patients</subject><subject>Photography</subject><subject>Public, Environmental &amp; Occupational Health</subject><subject>Radon</subject><subject>Science &amp; Technology</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Urea</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkc1uEzEUhS0EoiWwZYkssUFCKfbYM-OwqDQKv1IhSBS2o2vPHeLIGQ-2pyhvwSPjNCVqWbHylf2do3N9CHnK2ZkQC_bKbjCMa65YLWpR3iOnvKrYXFaM3781n5BHMW4YE0pWi4fkJEu5kgU7Jb-bgTYDuF20kfqepjXSJiBEujJmGi12VO_od4wRXaR2uAZWZnIQ6Ncp9GBwL3tjQWOyhn6BZHFI8TXdG4-jsybf-GEPAf3shxECbDGFzF5al7J_03U22Sukn3yH7jF50IOL-OTmnJFv795eLj_ML1bvPy6bi7nJi6a5LKRRUlW1KnoFTC4KYIWsew11pzkAL7u6NFojZ5Uu66LvNBomtVzUCssSxIycH3zHSW-xMzl0ANeOwW4h7FoPtr37Mth1-8NftSr_YpEzzMiLG4Pgf04YU7u10aBzMKCfYluUBVOVrITI6PN_0I2fQv71PZU7Eip3lKmzA2WCjzFgfwzDWbsvu71bdhY8u73CEf_bbgbUAfiF2vfR5GYMHjHGWCVUTsnzxPjSpuumln4aUpa-_H-p-AOjXsgf</recordid><startdate>20210402</startdate><enddate>20210402</enddate><creator>Boroumand, Farzaneh</creator><creator>Shakeri, Mohammad Taghi</creator><creator>Banaee, Touka</creator><creator>Pourreza, Hamidreza</creator><creator>Doosti, Hassan</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2972-3969</orcidid><orcidid>https://orcid.org/0000-0002-3560-8070</orcidid><orcidid>https://orcid.org/0000-0002-0290-8122</orcidid></search><sort><creationdate>20210402</creationdate><title>An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model</title><author>Boroumand, Farzaneh ; Shakeri, Mohammad Taghi ; Banaee, Touka ; Pourreza, Hamidreza ; Doosti, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-424c8486782f8a0492a0247fba7db1aa15d75cbbe106b572fdbec04b4978e55a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Blood pressure</topic><topic>Body mass</topic><topic>Body mass index</topic><topic>Body size</topic><topic>Cameras</topic><topic>Cornea</topic><topic>Creatinine</topic><topic>Cross-Sectional Studies</topic><topic>Diabetes</topic><topic>Diabetes Mellitus</topic><topic>Diabetic retinopathy</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Eye - blood supply</topic><topic>Generalized linear models</topic><topic>Glycated Hemoglobin</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Microvasculature</topic><topic>Middle Aged</topic><topic>Nonparametric statistics</topic><topic>Patients</topic><topic>Photography</topic><topic>Public, Environmental &amp; Occupational Health</topic><topic>Radon</topic><topic>Science &amp; Technology</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boroumand, Farzaneh</creatorcontrib><creatorcontrib>Shakeri, Mohammad Taghi</creatorcontrib><creatorcontrib>Banaee, Touka</creatorcontrib><creatorcontrib>Pourreza, Hamidreza</creatorcontrib><creatorcontrib>Doosti, Hassan</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boroumand, Farzaneh</au><au>Shakeri, Mohammad Taghi</au><au>Banaee, Touka</au><au>Pourreza, Hamidreza</au><au>Doosti, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model</atitle><jtitle>International journal of environmental research and public health</jtitle><stitle>INT J ENV RES PUB HE</stitle><addtitle>Int J Environ Res Public Health</addtitle><date>2021-04-02</date><risdate>2021</risdate><volume>18</volume><issue>7</issue><spage>3735</spage><pages>3735-</pages><artnum>3735</artnum><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>(1) Background: As diabetes melllitus (DM) can affect the microvasculature, this study evaluates different clinical parameters and the vascular density of ocular surface microvasculature in diabetic patients. (2) Methods: In this cross-sectional study, red-free conjunctival photographs of diabetic individuals aged 30-60 were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The Areas Occupied by Vessels (AOV) images of different diameters were calculated. To establish the sum of AOV of different sized vessels. We adopt a novel approach to investigate the association between clinical characteristics as the predictors and AOV as the outcome, that is Tilted Additive Model (TAM). We use a tilted nonparametric regression estimator to estimate the nonlinear effect of predictors on the outcome in the additive setting for the first time. (3) Results: The results show Age (p-value = 0.019) and Mean Arterial Pressure (MAP) have a significant linear effect on AOV (p-value = 0.034). We also find a nonlinear association between Body Mass Index (BMI), daily Urinary Protein Excretion (UPE), Hemoglobin A1C, and Blood Urea Nitrogen (BUN) with AOV. (4) Conclusions: As many predictors do not have a linear relationship with the outcome, we conclude that the TAM will help better elucidate the effect of the different predictors. The highest level of AOV can be seen at Hemoglobin A1C of 9% and AOV increases when the daily UPE exceeds 600 mg. These effects need to be considered in future studies of ocular surface vessels of diabetic patients.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33918420</pmid><doi>10.3390/ijerph18073735</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2972-3969</orcidid><orcidid>https://orcid.org/0000-0002-3560-8070</orcidid><orcidid>https://orcid.org/0000-0002-0290-8122</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2021-04, Vol.18 (7), p.3735, Article 3735
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_proquest_journals_2566038601
source MEDLINE; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Free Full-Text Journals in Chemistry
subjects Adult
Algorithms
Blood pressure
Body mass
Body mass index
Body size
Cameras
Cornea
Creatinine
Cross-Sectional Studies
Diabetes
Diabetes Mellitus
Diabetic retinopathy
Environmental Sciences
Environmental Sciences & Ecology
Eye - blood supply
Generalized linear models
Glycated Hemoglobin
Hemoglobin
Humans
Hypertension
Life Sciences & Biomedicine
Microvasculature
Middle Aged
Nonparametric statistics
Patients
Photography
Public, Environmental & Occupational Health
Radon
Science & Technology
Statistical analysis
Statistical methods
Urea
title An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Analysis%20of%20the%20Areas%20Occupied%20by%20Vessels%20in%20the%20Ocular%20Surface%20of%20Diabetic%20Patients:%20An%20Application%20of%20a%20Nonparametric%20Tilted%20Additive%20Model&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Boroumand,%20Farzaneh&rft.date=2021-04-02&rft.volume=18&rft.issue=7&rft.spage=3735&rft.pages=3735-&rft.artnum=3735&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph18073735&rft_dat=%3Cproquest_webof%3E2520864633%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566038601&rft_id=info:pmid/33918420&rfr_iscdi=true