An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model
(1) Background: As diabetes melllitus (DM) can affect the microvasculature, this study evaluates different clinical parameters and the vascular density of ocular surface microvasculature in diabetic patients. (2) Methods: In this cross-sectional study, red-free conjunctival photographs of diabetic i...
Gespeichert in:
Veröffentlicht in: | International journal of environmental research and public health 2021-04, Vol.18 (7), p.3735, Article 3735 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 3735 |
container_title | International journal of environmental research and public health |
container_volume | 18 |
creator | Boroumand, Farzaneh Shakeri, Mohammad Taghi Banaee, Touka Pourreza, Hamidreza Doosti, Hassan |
description | (1) Background: As diabetes melllitus (DM) can affect the microvasculature, this study evaluates different clinical parameters and the vascular density of ocular surface microvasculature in diabetic patients. (2) Methods: In this cross-sectional study, red-free conjunctival photographs of diabetic individuals aged 30-60 were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The Areas Occupied by Vessels (AOV) images of different diameters were calculated. To establish the sum of AOV of different sized vessels. We adopt a novel approach to investigate the association between clinical characteristics as the predictors and AOV as the outcome, that is Tilted Additive Model (TAM). We use a tilted nonparametric regression estimator to estimate the nonlinear effect of predictors on the outcome in the additive setting for the first time. (3) Results: The results show Age (p-value = 0.019) and Mean Arterial Pressure (MAP) have a significant linear effect on AOV (p-value = 0.034). We also find a nonlinear association between Body Mass Index (BMI), daily Urinary Protein Excretion (UPE), Hemoglobin A1C, and Blood Urea Nitrogen (BUN) with AOV. (4) Conclusions: As many predictors do not have a linear relationship with the outcome, we conclude that the TAM will help better elucidate the effect of the different predictors. The highest level of AOV can be seen at Hemoglobin A1C of 9% and AOV increases when the daily UPE exceeds 600 mg. These effects need to be considered in future studies of ocular surface vessels of diabetic patients. |
doi_str_mv | 10.3390/ijerph18073735 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2566038601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520864633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-424c8486782f8a0492a0247fba7db1aa15d75cbbe106b572fdbec04b4978e55a3</originalsourceid><addsrcrecordid>eNqNkc1uEzEUhS0EoiWwZYkssUFCKfbYM-OwqDQKv1IhSBS2o2vPHeLIGQ-2pyhvwSPjNCVqWbHylf2do3N9CHnK2ZkQC_bKbjCMa65YLWpR3iOnvKrYXFaM3781n5BHMW4YE0pWi4fkJEu5kgU7Jb-bgTYDuF20kfqepjXSJiBEujJmGi12VO_od4wRXaR2uAZWZnIQ6Ncp9GBwL3tjQWOyhn6BZHFI8TXdG4-jsybf-GEPAf3shxECbDGFzF5al7J_03U22Sukn3yH7jF50IOL-OTmnJFv795eLj_ML1bvPy6bi7nJi6a5LKRRUlW1KnoFTC4KYIWsew11pzkAL7u6NFojZ5Uu66LvNBomtVzUCssSxIycH3zHSW-xMzl0ANeOwW4h7FoPtr37Mth1-8NftSr_YpEzzMiLG4Pgf04YU7u10aBzMKCfYluUBVOVrITI6PN_0I2fQv71PZU7Eip3lKmzA2WCjzFgfwzDWbsvu71bdhY8u73CEf_bbgbUAfiF2vfR5GYMHjHGWCVUTsnzxPjSpuumln4aUpa-_H-p-AOjXsgf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566038601</pqid></control><display><type>article</type><title>An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Free Full-Text Journals in Chemistry</source><creator>Boroumand, Farzaneh ; Shakeri, Mohammad Taghi ; Banaee, Touka ; Pourreza, Hamidreza ; Doosti, Hassan</creator><creatorcontrib>Boroumand, Farzaneh ; Shakeri, Mohammad Taghi ; Banaee, Touka ; Pourreza, Hamidreza ; Doosti, Hassan</creatorcontrib><description>(1) Background: As diabetes melllitus (DM) can affect the microvasculature, this study evaluates different clinical parameters and the vascular density of ocular surface microvasculature in diabetic patients. (2) Methods: In this cross-sectional study, red-free conjunctival photographs of diabetic individuals aged 30-60 were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The Areas Occupied by Vessels (AOV) images of different diameters were calculated. To establish the sum of AOV of different sized vessels. We adopt a novel approach to investigate the association between clinical characteristics as the predictors and AOV as the outcome, that is Tilted Additive Model (TAM). We use a tilted nonparametric regression estimator to estimate the nonlinear effect of predictors on the outcome in the additive setting for the first time. (3) Results: The results show Age (p-value = 0.019) and Mean Arterial Pressure (MAP) have a significant linear effect on AOV (p-value = 0.034). We also find a nonlinear association between Body Mass Index (BMI), daily Urinary Protein Excretion (UPE), Hemoglobin A1C, and Blood Urea Nitrogen (BUN) with AOV. (4) Conclusions: As many predictors do not have a linear relationship with the outcome, we conclude that the TAM will help better elucidate the effect of the different predictors. The highest level of AOV can be seen at Hemoglobin A1C of 9% and AOV increases when the daily UPE exceeds 600 mg. These effects need to be considered in future studies of ocular surface vessels of diabetic patients.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph18073735</identifier><identifier>PMID: 33918420</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Adult ; Algorithms ; Blood pressure ; Body mass ; Body mass index ; Body size ; Cameras ; Cornea ; Creatinine ; Cross-Sectional Studies ; Diabetes ; Diabetes Mellitus ; Diabetic retinopathy ; Environmental Sciences ; Environmental Sciences & Ecology ; Eye - blood supply ; Generalized linear models ; Glycated Hemoglobin ; Hemoglobin ; Humans ; Hypertension ; Life Sciences & Biomedicine ; Microvasculature ; Middle Aged ; Nonparametric statistics ; Patients ; Photography ; Public, Environmental & Occupational Health ; Radon ; Science & Technology ; Statistical analysis ; Statistical methods ; Urea</subject><ispartof>International journal of environmental research and public health, 2021-04, Vol.18 (7), p.3735, Article 3735</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000638520100001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c373t-424c8486782f8a0492a0247fba7db1aa15d75cbbe106b572fdbec04b4978e55a3</cites><orcidid>0000-0003-2972-3969 ; 0000-0002-3560-8070 ; 0000-0002-0290-8122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038237/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038237/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39262,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33918420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boroumand, Farzaneh</creatorcontrib><creatorcontrib>Shakeri, Mohammad Taghi</creatorcontrib><creatorcontrib>Banaee, Touka</creatorcontrib><creatorcontrib>Pourreza, Hamidreza</creatorcontrib><creatorcontrib>Doosti, Hassan</creatorcontrib><title>An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model</title><title>International journal of environmental research and public health</title><addtitle>INT J ENV RES PUB HE</addtitle><addtitle>Int J Environ Res Public Health</addtitle><description>(1) Background: As diabetes melllitus (DM) can affect the microvasculature, this study evaluates different clinical parameters and the vascular density of ocular surface microvasculature in diabetic patients. (2) Methods: In this cross-sectional study, red-free conjunctival photographs of diabetic individuals aged 30-60 were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The Areas Occupied by Vessels (AOV) images of different diameters were calculated. To establish the sum of AOV of different sized vessels. We adopt a novel approach to investigate the association between clinical characteristics as the predictors and AOV as the outcome, that is Tilted Additive Model (TAM). We use a tilted nonparametric regression estimator to estimate the nonlinear effect of predictors on the outcome in the additive setting for the first time. (3) Results: The results show Age (p-value = 0.019) and Mean Arterial Pressure (MAP) have a significant linear effect on AOV (p-value = 0.034). We also find a nonlinear association between Body Mass Index (BMI), daily Urinary Protein Excretion (UPE), Hemoglobin A1C, and Blood Urea Nitrogen (BUN) with AOV. (4) Conclusions: As many predictors do not have a linear relationship with the outcome, we conclude that the TAM will help better elucidate the effect of the different predictors. The highest level of AOV can be seen at Hemoglobin A1C of 9% and AOV increases when the daily UPE exceeds 600 mg. These effects need to be considered in future studies of ocular surface vessels of diabetic patients.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Blood pressure</subject><subject>Body mass</subject><subject>Body mass index</subject><subject>Body size</subject><subject>Cameras</subject><subject>Cornea</subject><subject>Creatinine</subject><subject>Cross-Sectional Studies</subject><subject>Diabetes</subject><subject>Diabetes Mellitus</subject><subject>Diabetic retinopathy</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences & Ecology</subject><subject>Eye - blood supply</subject><subject>Generalized linear models</subject><subject>Glycated Hemoglobin</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Life Sciences & Biomedicine</subject><subject>Microvasculature</subject><subject>Middle Aged</subject><subject>Nonparametric statistics</subject><subject>Patients</subject><subject>Photography</subject><subject>Public, Environmental & Occupational Health</subject><subject>Radon</subject><subject>Science & Technology</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Urea</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkc1uEzEUhS0EoiWwZYkssUFCKfbYM-OwqDQKv1IhSBS2o2vPHeLIGQ-2pyhvwSPjNCVqWbHylf2do3N9CHnK2ZkQC_bKbjCMa65YLWpR3iOnvKrYXFaM3781n5BHMW4YE0pWi4fkJEu5kgU7Jb-bgTYDuF20kfqepjXSJiBEujJmGi12VO_od4wRXaR2uAZWZnIQ6Ncp9GBwL3tjQWOyhn6BZHFI8TXdG4-jsybf-GEPAf3shxECbDGFzF5al7J_03U22Sukn3yH7jF50IOL-OTmnJFv795eLj_ML1bvPy6bi7nJi6a5LKRRUlW1KnoFTC4KYIWsew11pzkAL7u6NFojZ5Uu66LvNBomtVzUCssSxIycH3zHSW-xMzl0ANeOwW4h7FoPtr37Mth1-8NftSr_YpEzzMiLG4Pgf04YU7u10aBzMKCfYluUBVOVrITI6PN_0I2fQv71PZU7Eip3lKmzA2WCjzFgfwzDWbsvu71bdhY8u73CEf_bbgbUAfiF2vfR5GYMHjHGWCVUTsnzxPjSpuumln4aUpa-_H-p-AOjXsgf</recordid><startdate>20210402</startdate><enddate>20210402</enddate><creator>Boroumand, Farzaneh</creator><creator>Shakeri, Mohammad Taghi</creator><creator>Banaee, Touka</creator><creator>Pourreza, Hamidreza</creator><creator>Doosti, Hassan</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2972-3969</orcidid><orcidid>https://orcid.org/0000-0002-3560-8070</orcidid><orcidid>https://orcid.org/0000-0002-0290-8122</orcidid></search><sort><creationdate>20210402</creationdate><title>An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model</title><author>Boroumand, Farzaneh ; Shakeri, Mohammad Taghi ; Banaee, Touka ; Pourreza, Hamidreza ; Doosti, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-424c8486782f8a0492a0247fba7db1aa15d75cbbe106b572fdbec04b4978e55a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Blood pressure</topic><topic>Body mass</topic><topic>Body mass index</topic><topic>Body size</topic><topic>Cameras</topic><topic>Cornea</topic><topic>Creatinine</topic><topic>Cross-Sectional Studies</topic><topic>Diabetes</topic><topic>Diabetes Mellitus</topic><topic>Diabetic retinopathy</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences & Ecology</topic><topic>Eye - blood supply</topic><topic>Generalized linear models</topic><topic>Glycated Hemoglobin</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Life Sciences & Biomedicine</topic><topic>Microvasculature</topic><topic>Middle Aged</topic><topic>Nonparametric statistics</topic><topic>Patients</topic><topic>Photography</topic><topic>Public, Environmental & Occupational Health</topic><topic>Radon</topic><topic>Science & Technology</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boroumand, Farzaneh</creatorcontrib><creatorcontrib>Shakeri, Mohammad Taghi</creatorcontrib><creatorcontrib>Banaee, Touka</creatorcontrib><creatorcontrib>Pourreza, Hamidreza</creatorcontrib><creatorcontrib>Doosti, Hassan</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI & AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boroumand, Farzaneh</au><au>Shakeri, Mohammad Taghi</au><au>Banaee, Touka</au><au>Pourreza, Hamidreza</au><au>Doosti, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model</atitle><jtitle>International journal of environmental research and public health</jtitle><stitle>INT J ENV RES PUB HE</stitle><addtitle>Int J Environ Res Public Health</addtitle><date>2021-04-02</date><risdate>2021</risdate><volume>18</volume><issue>7</issue><spage>3735</spage><pages>3735-</pages><artnum>3735</artnum><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>(1) Background: As diabetes melllitus (DM) can affect the microvasculature, this study evaluates different clinical parameters and the vascular density of ocular surface microvasculature in diabetic patients. (2) Methods: In this cross-sectional study, red-free conjunctival photographs of diabetic individuals aged 30-60 were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The Areas Occupied by Vessels (AOV) images of different diameters were calculated. To establish the sum of AOV of different sized vessels. We adopt a novel approach to investigate the association between clinical characteristics as the predictors and AOV as the outcome, that is Tilted Additive Model (TAM). We use a tilted nonparametric regression estimator to estimate the nonlinear effect of predictors on the outcome in the additive setting for the first time. (3) Results: The results show Age (p-value = 0.019) and Mean Arterial Pressure (MAP) have a significant linear effect on AOV (p-value = 0.034). We also find a nonlinear association between Body Mass Index (BMI), daily Urinary Protein Excretion (UPE), Hemoglobin A1C, and Blood Urea Nitrogen (BUN) with AOV. (4) Conclusions: As many predictors do not have a linear relationship with the outcome, we conclude that the TAM will help better elucidate the effect of the different predictors. The highest level of AOV can be seen at Hemoglobin A1C of 9% and AOV increases when the daily UPE exceeds 600 mg. These effects need to be considered in future studies of ocular surface vessels of diabetic patients.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33918420</pmid><doi>10.3390/ijerph18073735</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2972-3969</orcidid><orcidid>https://orcid.org/0000-0002-3560-8070</orcidid><orcidid>https://orcid.org/0000-0002-0290-8122</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-4601 |
ispartof | International journal of environmental research and public health, 2021-04, Vol.18 (7), p.3735, Article 3735 |
issn | 1660-4601 1661-7827 1660-4601 |
language | eng |
recordid | cdi_proquest_journals_2566038601 |
source | MEDLINE; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Free Full-Text Journals in Chemistry |
subjects | Adult Algorithms Blood pressure Body mass Body mass index Body size Cameras Cornea Creatinine Cross-Sectional Studies Diabetes Diabetes Mellitus Diabetic retinopathy Environmental Sciences Environmental Sciences & Ecology Eye - blood supply Generalized linear models Glycated Hemoglobin Hemoglobin Humans Hypertension Life Sciences & Biomedicine Microvasculature Middle Aged Nonparametric statistics Patients Photography Public, Environmental & Occupational Health Radon Science & Technology Statistical analysis Statistical methods Urea |
title | An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Analysis%20of%20the%20Areas%20Occupied%20by%20Vessels%20in%20the%20Ocular%20Surface%20of%20Diabetic%20Patients:%20An%20Application%20of%20a%20Nonparametric%20Tilted%20Additive%20Model&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Boroumand,%20Farzaneh&rft.date=2021-04-02&rft.volume=18&rft.issue=7&rft.spage=3735&rft.pages=3735-&rft.artnum=3735&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph18073735&rft_dat=%3Cproquest_webof%3E2520864633%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566038601&rft_id=info:pmid/33918420&rfr_iscdi=true |