Effects of Anodic Aluminum Oxide Substrate Pore Geometry on the Gas-Phase Photocatalytic Activity of ZnO/Al2O3 Composites Prepared by Atomic Layer Deposition

We report on the photocatalytic activity of ZnO layers deposited by atomic layer deposition on a porous anodic aluminum oxide substrate with hexagonal pore symmetry and varied pore dimensions. ZnO/Al2O3 composites were prepared with pore diameters in the range 93-134 nm and interpore distance in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2021-08, Vol.13 (8), p.1456, Article 1456
Hauptverfasser: Stefanov, Bozhidar I., Blagoev, Blagoy S., osterlund, Lars, Tzaneva, Boriana R., Angelov, George V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1456
container_title Symmetry (Basel)
container_volume 13
creator Stefanov, Bozhidar I.
Blagoev, Blagoy S.
osterlund, Lars
Tzaneva, Boriana R.
Angelov, George V.
description We report on the photocatalytic activity of ZnO layers deposited by atomic layer deposition on a porous anodic aluminum oxide substrate with hexagonal pore symmetry and varied pore dimensions. ZnO/Al2O3 composites were prepared with pore diameters in the range 93-134 nm and interpore distance in the range 185-286 nm, and their photocatalytic activity was measured for gas-phase photocatalytic oxidation of acetaldehyde at varying UV illumination intensities (0.08-3.94 mW cm(-2)). The results show that substrates with narrower pore diameters (
doi_str_mv 10.3390/sym13081456
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565712458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a6019533ecf24769a7929a3d0ff13e19</doaj_id><sourcerecordid>2565712458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-44c1aadddc9d409243dc6871fe0674105138ec53ca9f65c5eba0c76b643b67e93</originalsourceid><addsrcrecordid>eNqNkctu1DAUhiMEElXbFS9giSUaaseXxMsolFJppBkJ2LCJTpxjxqMkHmwHyMPwrk06qHSJN7595_Plz7I3jL7nXNObOA-M05IJqV5kFzkt-KbUWrx8Nn6dXcd4pEuTVApFL7I_t9aiSZF4S6rRd86Qqp8GN04D2f12HZLPUxtTgIRk7wOSO_QDpjATP5J0WOYQN_sDxGX74JM3kKCf06oxyf10aV7N38bdTdXnO05qP5x8dAkj2Qc8QcCOtDOpkh-Wmi3MGMgHfEScH6-yVxb6iNd_-8vs68fbL_WnzXZ3d19X243hSqSNEIYBdF1ndCeozgXvjCoLZpGqQjAqGS_RSG5AWyWNxBaoKVSrBG9VgZpfZvdnb-fh2JyCGyDMjQfXPC748L2BsDyqxwYUZVpyjsbmolAaCp1r4B21lnFkq-vt2XUK_seEMTVHP4VxuX6TSyULlgtZLtS7M2WCjzGgfTqV0WaNs3kW5z_6F7beRuNwNPhUscSpSl2UVK3JsoUu_5-uXYL1q2s_jYk_ADv0s-I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565712458</pqid></control><display><type>article</type><title>Effects of Anodic Aluminum Oxide Substrate Pore Geometry on the Gas-Phase Photocatalytic Activity of ZnO/Al2O3 Composites Prepared by Atomic Layer Deposition</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Stefanov, Bozhidar I. ; Blagoev, Blagoy S. ; osterlund, Lars ; Tzaneva, Boriana R. ; Angelov, George V.</creator><creatorcontrib>Stefanov, Bozhidar I. ; Blagoev, Blagoy S. ; osterlund, Lars ; Tzaneva, Boriana R. ; Angelov, George V.</creatorcontrib><description>We report on the photocatalytic activity of ZnO layers deposited by atomic layer deposition on a porous anodic aluminum oxide substrate with hexagonal pore symmetry and varied pore dimensions. ZnO/Al2O3 composites were prepared with pore diameters in the range 93-134 nm and interpore distance in the range 185-286 nm, and their photocatalytic activity was measured for gas-phase photocatalytic oxidation of acetaldehyde at varying UV illumination intensities (0.08-3.94 mW cm(-2)). The results show that substrates with narrower pore diameters (&lt;115 nm, in the case of this study) have a detrimental effect on the photocatalyst performance, despite their higher effective surface. The results are explained on the basis of limited mass transfer inside the porous structure and can be used as a guideline in the purposeful design of photocatalysts with a nanoporous or nanotubular structure.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym13081456</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Acetaldehyde ; Aluminum oxide ; anodic aluminum oxide ; Atomic layer epitaxy ; Catalytic activity ; Composite materials ; Diameters ; Electrolytes ; Experiments ; Mass transfer ; Morphology ; Multidisciplinary Sciences ; Oxidation ; Photocatalysis ; Photocatalysts ; photocatalytic activity ; Scanning electron microscopy ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Software ; Substrates ; Zinc oxide</subject><ispartof>Symmetry (Basel), 2021-08, Vol.13 (8), p.1456, Article 1456</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000689780600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c364t-44c1aadddc9d409243dc6871fe0674105138ec53ca9f65c5eba0c76b643b67e93</citedby><cites>FETCH-LOGICAL-c364t-44c1aadddc9d409243dc6871fe0674105138ec53ca9f65c5eba0c76b643b67e93</cites><orcidid>0000-0003-0296-5247 ; 0000-0001-7602-3960 ; 0000-0001-7085-6283 ; 0000-0002-1017-7067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Stefanov, Bozhidar I.</creatorcontrib><creatorcontrib>Blagoev, Blagoy S.</creatorcontrib><creatorcontrib>osterlund, Lars</creatorcontrib><creatorcontrib>Tzaneva, Boriana R.</creatorcontrib><creatorcontrib>Angelov, George V.</creatorcontrib><title>Effects of Anodic Aluminum Oxide Substrate Pore Geometry on the Gas-Phase Photocatalytic Activity of ZnO/Al2O3 Composites Prepared by Atomic Layer Deposition</title><title>Symmetry (Basel)</title><addtitle>SYMMETRY-BASEL</addtitle><description>We report on the photocatalytic activity of ZnO layers deposited by atomic layer deposition on a porous anodic aluminum oxide substrate with hexagonal pore symmetry and varied pore dimensions. ZnO/Al2O3 composites were prepared with pore diameters in the range 93-134 nm and interpore distance in the range 185-286 nm, and their photocatalytic activity was measured for gas-phase photocatalytic oxidation of acetaldehyde at varying UV illumination intensities (0.08-3.94 mW cm(-2)). The results show that substrates with narrower pore diameters (&lt;115 nm, in the case of this study) have a detrimental effect on the photocatalyst performance, despite their higher effective surface. The results are explained on the basis of limited mass transfer inside the porous structure and can be used as a guideline in the purposeful design of photocatalysts with a nanoporous or nanotubular structure.</description><subject>Acetaldehyde</subject><subject>Aluminum oxide</subject><subject>anodic aluminum oxide</subject><subject>Atomic layer epitaxy</subject><subject>Catalytic activity</subject><subject>Composite materials</subject><subject>Diameters</subject><subject>Electrolytes</subject><subject>Experiments</subject><subject>Mass transfer</subject><subject>Morphology</subject><subject>Multidisciplinary Sciences</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>photocatalytic activity</subject><subject>Scanning electron microscopy</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Software</subject><subject>Substrates</subject><subject>Zinc oxide</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkctu1DAUhiMEElXbFS9giSUaaseXxMsolFJppBkJ2LCJTpxjxqMkHmwHyMPwrk06qHSJN7595_Plz7I3jL7nXNObOA-M05IJqV5kFzkt-KbUWrx8Nn6dXcd4pEuTVApFL7I_t9aiSZF4S6rRd86Qqp8GN04D2f12HZLPUxtTgIRk7wOSO_QDpjATP5J0WOYQN_sDxGX74JM3kKCf06oxyf10aV7N38bdTdXnO05qP5x8dAkj2Qc8QcCOtDOpkh-Wmi3MGMgHfEScH6-yVxb6iNd_-8vs68fbL_WnzXZ3d19X243hSqSNEIYBdF1ndCeozgXvjCoLZpGqQjAqGS_RSG5AWyWNxBaoKVSrBG9VgZpfZvdnb-fh2JyCGyDMjQfXPC748L2BsDyqxwYUZVpyjsbmolAaCp1r4B21lnFkq-vt2XUK_seEMTVHP4VxuX6TSyULlgtZLtS7M2WCjzGgfTqV0WaNs3kW5z_6F7beRuNwNPhUscSpSl2UVK3JsoUu_5-uXYL1q2s_jYk_ADv0s-I</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Stefanov, Bozhidar I.</creator><creator>Blagoev, Blagoy S.</creator><creator>osterlund, Lars</creator><creator>Tzaneva, Boriana R.</creator><creator>Angelov, George V.</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0296-5247</orcidid><orcidid>https://orcid.org/0000-0001-7602-3960</orcidid><orcidid>https://orcid.org/0000-0001-7085-6283</orcidid><orcidid>https://orcid.org/0000-0002-1017-7067</orcidid></search><sort><creationdate>20210801</creationdate><title>Effects of Anodic Aluminum Oxide Substrate Pore Geometry on the Gas-Phase Photocatalytic Activity of ZnO/Al2O3 Composites Prepared by Atomic Layer Deposition</title><author>Stefanov, Bozhidar I. ; Blagoev, Blagoy S. ; osterlund, Lars ; Tzaneva, Boriana R. ; Angelov, George V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-44c1aadddc9d409243dc6871fe0674105138ec53ca9f65c5eba0c76b643b67e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetaldehyde</topic><topic>Aluminum oxide</topic><topic>anodic aluminum oxide</topic><topic>Atomic layer epitaxy</topic><topic>Catalytic activity</topic><topic>Composite materials</topic><topic>Diameters</topic><topic>Electrolytes</topic><topic>Experiments</topic><topic>Mass transfer</topic><topic>Morphology</topic><topic>Multidisciplinary Sciences</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>photocatalytic activity</topic><topic>Scanning electron microscopy</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Software</topic><topic>Substrates</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefanov, Bozhidar I.</creatorcontrib><creatorcontrib>Blagoev, Blagoy S.</creatorcontrib><creatorcontrib>osterlund, Lars</creatorcontrib><creatorcontrib>Tzaneva, Boriana R.</creatorcontrib><creatorcontrib>Angelov, George V.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefanov, Bozhidar I.</au><au>Blagoev, Blagoy S.</au><au>osterlund, Lars</au><au>Tzaneva, Boriana R.</au><au>Angelov, George V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Anodic Aluminum Oxide Substrate Pore Geometry on the Gas-Phase Photocatalytic Activity of ZnO/Al2O3 Composites Prepared by Atomic Layer Deposition</atitle><jtitle>Symmetry (Basel)</jtitle><stitle>SYMMETRY-BASEL</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>13</volume><issue>8</issue><spage>1456</spage><pages>1456-</pages><artnum>1456</artnum><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>We report on the photocatalytic activity of ZnO layers deposited by atomic layer deposition on a porous anodic aluminum oxide substrate with hexagonal pore symmetry and varied pore dimensions. ZnO/Al2O3 composites were prepared with pore diameters in the range 93-134 nm and interpore distance in the range 185-286 nm, and their photocatalytic activity was measured for gas-phase photocatalytic oxidation of acetaldehyde at varying UV illumination intensities (0.08-3.94 mW cm(-2)). The results show that substrates with narrower pore diameters (&lt;115 nm, in the case of this study) have a detrimental effect on the photocatalyst performance, despite their higher effective surface. The results are explained on the basis of limited mass transfer inside the porous structure and can be used as a guideline in the purposeful design of photocatalysts with a nanoporous or nanotubular structure.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/sym13081456</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0296-5247</orcidid><orcidid>https://orcid.org/0000-0001-7602-3960</orcidid><orcidid>https://orcid.org/0000-0001-7085-6283</orcidid><orcidid>https://orcid.org/0000-0002-1017-7067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2021-08, Vol.13 (8), p.1456, Article 1456
issn 2073-8994
2073-8994
language eng
recordid cdi_proquest_journals_2565712458
source MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Directory of Open Access Journals; EZB Electronic Journals Library
subjects Acetaldehyde
Aluminum oxide
anodic aluminum oxide
Atomic layer epitaxy
Catalytic activity
Composite materials
Diameters
Electrolytes
Experiments
Mass transfer
Morphology
Multidisciplinary Sciences
Oxidation
Photocatalysis
Photocatalysts
photocatalytic activity
Scanning electron microscopy
Science & Technology
Science & Technology - Other Topics
Software
Substrates
Zinc oxide
title Effects of Anodic Aluminum Oxide Substrate Pore Geometry on the Gas-Phase Photocatalytic Activity of ZnO/Al2O3 Composites Prepared by Atomic Layer Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Anodic%20Aluminum%20Oxide%20Substrate%20Pore%20Geometry%20on%20the%20Gas-Phase%20Photocatalytic%20Activity%20of%20ZnO/Al2O3%20Composites%20Prepared%20by%20Atomic%20Layer%20Deposition&rft.jtitle=Symmetry%20(Basel)&rft.au=Stefanov,%20Bozhidar%20I.&rft.date=2021-08-01&rft.volume=13&rft.issue=8&rft.spage=1456&rft.pages=1456-&rft.artnum=1456&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym13081456&rft_dat=%3Cproquest_cross%3E2565712458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565712458&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a6019533ecf24769a7929a3d0ff13e19&rfr_iscdi=true