PROPTI - A Generalised Inverse Modelling Framework

Simulation of pyrolysis involves the knowledge of reaction kinetics and thermo-physical parameters, which are in general not directly measurable. Inverse modelling provides means to deduce the needed parameters from experimental data. This complex process involves the coupling of a simulation model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2018-11, Vol.1107 (3), p.32016
Hauptverfasser: Arnold, Lukas, Hehnen, Tristan, Lauer, Patrick, Trettin, Corinna, Vinayak, Ashish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 32016
container_title Journal of physics. Conference series
container_volume 1107
creator Arnold, Lukas
Hehnen, Tristan
Lauer, Patrick
Trettin, Corinna
Vinayak, Ashish
description Simulation of pyrolysis involves the knowledge of reaction kinetics and thermo-physical parameters, which are in general not directly measurable. Inverse modelling provides means to deduce the needed parameters from experimental data. This complex process involves the coupling of a simulation model with an optimisation method as well as the handling of a large amount of data. All of these processes are prone to errors and therefore a unified and automated implementation is beneficial for the whole community. In this contribution, a software to carry out this process is proposed. PROPTI is an open source tool written in Python, that is meant to provide a framework for inverse modelling of parameters in computer simulation, with emphasis on pyrolysis modelling in fire simulation. Its generalised formulation allows the usage of any simulation model in combination with various experimental data. The underlying optimisation library allows the utilisation of HPC systems. After presenting the concept of this framework, two examples are shown to illustrate the process and demonstrate the capabilities.
doi_str_mv 10.1088/1742-6596/1107/3/032016
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2565558270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565558270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-5a44de05274c5e4b32099ad650450441c2af2e0c1e4759afc1408fdccbb6a8c43</originalsourceid><addsrcrecordid>eNqFUE1Lw0AQXUTBWv0NBjzHzH5vjqXYWqi0SD0v281EUtOk7lrFf29CpB4dBmZg3nsz8wi5pXBPwZiMasFSJXOVUQo64xlwBlSdkdFpcn7qjbkkVzHuAHgXekTY-nm13iySNJkkc2wwuLqKWCSL5hNDxOSpLbCuq-Y1mQW3x682vF2Ti9LVEW9-65i8zB4208d0uZovppNl6lnOVSqdEAWCZFp4iWLbXZXnrlASRJeCeuZKhuApCi1zV3oqwJSF99utcsYLPiZ3g-4htO9HjB921x5D0620TCoppWEaOpQeUD60MQYs7SFUexe-LQXbG2T7121vg-0NstwOBnVMPjCr9vAn_R_rByC0ZPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565558270</pqid></control><display><type>article</type><title>PROPTI - A Generalised Inverse Modelling Framework</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Arnold, Lukas ; Hehnen, Tristan ; Lauer, Patrick ; Trettin, Corinna ; Vinayak, Ashish</creator><creatorcontrib>Arnold, Lukas ; Hehnen, Tristan ; Lauer, Patrick ; Trettin, Corinna ; Vinayak, Ashish</creatorcontrib><description>Simulation of pyrolysis involves the knowledge of reaction kinetics and thermo-physical parameters, which are in general not directly measurable. Inverse modelling provides means to deduce the needed parameters from experimental data. This complex process involves the coupling of a simulation model with an optimisation method as well as the handling of a large amount of data. All of these processes are prone to errors and therefore a unified and automated implementation is beneficial for the whole community. In this contribution, a software to carry out this process is proposed. PROPTI is an open source tool written in Python, that is meant to provide a framework for inverse modelling of parameters in computer simulation, with emphasis on pyrolysis modelling in fire simulation. Its generalised formulation allows the usage of any simulation model in combination with various experimental data. The underlying optimisation library allows the utilisation of HPC systems. After presenting the concept of this framework, two examples are shown to illustrate the process and demonstrate the capabilities.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1107/3/032016</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Computer simulation ; FDS ; framework ; HPC ; inverse modelling ; Mathematical models ; Modelling ; optimisation ; Optimization ; Parameters ; Physical properties ; Pyrolysis ; Reaction kinetics ; Simulation</subject><ispartof>Journal of physics. Conference series, 2018-11, Vol.1107 (3), p.32016</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-5a44de05274c5e4b32099ad650450441c2af2e0c1e4759afc1408fdccbb6a8c43</citedby><cites>FETCH-LOGICAL-c2936-5a44de05274c5e4b32099ad650450441c2af2e0c1e4759afc1408fdccbb6a8c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1107/3/032016/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Arnold, Lukas</creatorcontrib><creatorcontrib>Hehnen, Tristan</creatorcontrib><creatorcontrib>Lauer, Patrick</creatorcontrib><creatorcontrib>Trettin, Corinna</creatorcontrib><creatorcontrib>Vinayak, Ashish</creatorcontrib><title>PROPTI - A Generalised Inverse Modelling Framework</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Simulation of pyrolysis involves the knowledge of reaction kinetics and thermo-physical parameters, which are in general not directly measurable. Inverse modelling provides means to deduce the needed parameters from experimental data. This complex process involves the coupling of a simulation model with an optimisation method as well as the handling of a large amount of data. All of these processes are prone to errors and therefore a unified and automated implementation is beneficial for the whole community. In this contribution, a software to carry out this process is proposed. PROPTI is an open source tool written in Python, that is meant to provide a framework for inverse modelling of parameters in computer simulation, with emphasis on pyrolysis modelling in fire simulation. Its generalised formulation allows the usage of any simulation model in combination with various experimental data. The underlying optimisation library allows the utilisation of HPC systems. After presenting the concept of this framework, two examples are shown to illustrate the process and demonstrate the capabilities.</description><subject>Computer simulation</subject><subject>FDS</subject><subject>framework</subject><subject>HPC</subject><subject>inverse modelling</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>optimisation</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Physical properties</subject><subject>Pyrolysis</subject><subject>Reaction kinetics</subject><subject>Simulation</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFUE1Lw0AQXUTBWv0NBjzHzH5vjqXYWqi0SD0v281EUtOk7lrFf29CpB4dBmZg3nsz8wi5pXBPwZiMasFSJXOVUQo64xlwBlSdkdFpcn7qjbkkVzHuAHgXekTY-nm13iySNJkkc2wwuLqKWCSL5hNDxOSpLbCuq-Y1mQW3x682vF2Ti9LVEW9-65i8zB4208d0uZovppNl6lnOVSqdEAWCZFp4iWLbXZXnrlASRJeCeuZKhuApCi1zV3oqwJSF99utcsYLPiZ3g-4htO9HjB921x5D0620TCoppWEaOpQeUD60MQYs7SFUexe-LQXbG2T7121vg-0NstwOBnVMPjCr9vAn_R_rByC0ZPc</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Arnold, Lukas</creator><creator>Hehnen, Tristan</creator><creator>Lauer, Patrick</creator><creator>Trettin, Corinna</creator><creator>Vinayak, Ashish</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20181101</creationdate><title>PROPTI - A Generalised Inverse Modelling Framework</title><author>Arnold, Lukas ; Hehnen, Tristan ; Lauer, Patrick ; Trettin, Corinna ; Vinayak, Ashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-5a44de05274c5e4b32099ad650450441c2af2e0c1e4759afc1408fdccbb6a8c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>FDS</topic><topic>framework</topic><topic>HPC</topic><topic>inverse modelling</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>optimisation</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Physical properties</topic><topic>Pyrolysis</topic><topic>Reaction kinetics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, Lukas</creatorcontrib><creatorcontrib>Hehnen, Tristan</creatorcontrib><creatorcontrib>Lauer, Patrick</creatorcontrib><creatorcontrib>Trettin, Corinna</creatorcontrib><creatorcontrib>Vinayak, Ashish</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, Lukas</au><au>Hehnen, Tristan</au><au>Lauer, Patrick</au><au>Trettin, Corinna</au><au>Vinayak, Ashish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PROPTI - A Generalised Inverse Modelling Framework</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>1107</volume><issue>3</issue><spage>32016</spage><pages>32016-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Simulation of pyrolysis involves the knowledge of reaction kinetics and thermo-physical parameters, which are in general not directly measurable. Inverse modelling provides means to deduce the needed parameters from experimental data. This complex process involves the coupling of a simulation model with an optimisation method as well as the handling of a large amount of data. All of these processes are prone to errors and therefore a unified and automated implementation is beneficial for the whole community. In this contribution, a software to carry out this process is proposed. PROPTI is an open source tool written in Python, that is meant to provide a framework for inverse modelling of parameters in computer simulation, with emphasis on pyrolysis modelling in fire simulation. Its generalised formulation allows the usage of any simulation model in combination with various experimental data. The underlying optimisation library allows the utilisation of HPC systems. After presenting the concept of this framework, two examples are shown to illustrate the process and demonstrate the capabilities.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1107/3/032016</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2018-11, Vol.1107 (3), p.32016
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2565558270
source Institute of Physics IOPscience extra; IOP Publishing; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Computer simulation
FDS
framework
HPC
inverse modelling
Mathematical models
Modelling
optimisation
Optimization
Parameters
Physical properties
Pyrolysis
Reaction kinetics
Simulation
title PROPTI - A Generalised Inverse Modelling Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A28%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PROPTI%20-%20A%20Generalised%20Inverse%20Modelling%20Framework&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Arnold,%20Lukas&rft.date=2018-11-01&rft.volume=1107&rft.issue=3&rft.spage=32016&rft.pages=32016-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1107/3/032016&rft_dat=%3Cproquest_iop_j%3E2565558270%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565558270&rft_id=info:pmid/&rfr_iscdi=true