Curve shortening flow in a 3-dimensional pseudohermitian manifold

In this paper, we introduce a curve shortening flow in a 3-dimensional pseudohermitian manifold with vanishing torsion. The flow preserves the Legendrian condition and decreases the length of curves. The stationary solution of our flow is a Legendrian geodesic. We classify the singularity and prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2021-12, Vol.60 (6), Article 212
Hauptverfasser: Pan, Shujing, Sun, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 60
creator Pan, Shujing
Sun, Jun
description In this paper, we introduce a curve shortening flow in a 3-dimensional pseudohermitian manifold with vanishing torsion. The flow preserves the Legendrian condition and decreases the length of curves. The stationary solution of our flow is a Legendrian geodesic. We classify the singularity and prove some convergence results. Moreover, we study the flow in Heisenberg group especially with Type I singularity.
doi_str_mv 10.1007/s00526-021-02062-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565482317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565482317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-15bc48141f12321b90fabc48d457d858028a6861428cd4a203ebfd73524657fe3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52gy-djssRS_oOBFzyHdTdqU3aQmu1r_vVtX8OZhGBie92V4ELqm5JYSUt5lQgRITICOQyTgwwmaUc4AE8XEKZqRinMMUlbn6CLnHSFUKOAztFgO6cMWeRtTb4MPm8K18bPwoTAFw43vbMg-BtMW-2yHJm5t6nzvTSg6E7yLbXOJzpxps7363XP09nD_unzCq5fH5-VihWvgVY-pWNdcUU4dBQZ0XRFnjpeGi7JRQhFQRipJOai64QYIs2vXlEwAl6J0ls3RzdS7T_F9sLnXuzik8bOsQUjBFTBajhRMVJ1izsk6vU--M-lLU6KPqvSkSo-q9I8qfRhDbArlEQ4bm_6q_0l9A0Ama2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565482317</pqid></control><display><type>article</type><title>Curve shortening flow in a 3-dimensional pseudohermitian manifold</title><source>Springer Nature - Complete Springer Journals</source><creator>Pan, Shujing ; Sun, Jun</creator><creatorcontrib>Pan, Shujing ; Sun, Jun</creatorcontrib><description>In this paper, we introduce a curve shortening flow in a 3-dimensional pseudohermitian manifold with vanishing torsion. The flow preserves the Legendrian condition and decreases the length of curves. The stationary solution of our flow is a Legendrian geodesic. We classify the singularity and prove some convergence results. Moreover, we study the flow in Heisenberg group especially with Type I singularity.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-021-02062-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Singularities ; Systems Theory ; Theoretical ; Three dimensional flow</subject><ispartof>Calculus of variations and partial differential equations, 2021-12, Vol.60 (6), Article 212</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-15bc48141f12321b90fabc48d457d858028a6861428cd4a203ebfd73524657fe3</citedby><cites>FETCH-LOGICAL-c249t-15bc48141f12321b90fabc48d457d858028a6861428cd4a203ebfd73524657fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-021-02062-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-021-02062-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pan, Shujing</creatorcontrib><creatorcontrib>Sun, Jun</creatorcontrib><title>Curve shortening flow in a 3-dimensional pseudohermitian manifold</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>In this paper, we introduce a curve shortening flow in a 3-dimensional pseudohermitian manifold with vanishing torsion. The flow preserves the Legendrian condition and decreases the length of curves. The stationary solution of our flow is a Legendrian geodesic. We classify the singularity and prove some convergence results. Moreover, we study the flow in Heisenberg group especially with Type I singularity.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Singularities</subject><subject>Systems Theory</subject><subject>Theoretical</subject><subject>Three dimensional flow</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52gy-djssRS_oOBFzyHdTdqU3aQmu1r_vVtX8OZhGBie92V4ELqm5JYSUt5lQgRITICOQyTgwwmaUc4AE8XEKZqRinMMUlbn6CLnHSFUKOAztFgO6cMWeRtTb4MPm8K18bPwoTAFw43vbMg-BtMW-2yHJm5t6nzvTSg6E7yLbXOJzpxps7363XP09nD_unzCq5fH5-VihWvgVY-pWNdcUU4dBQZ0XRFnjpeGi7JRQhFQRipJOai64QYIs2vXlEwAl6J0ls3RzdS7T_F9sLnXuzik8bOsQUjBFTBajhRMVJ1izsk6vU--M-lLU6KPqvSkSo-q9I8qfRhDbArlEQ4bm_6q_0l9A0Ama2M</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Pan, Shujing</creator><creator>Sun, Jun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20211201</creationdate><title>Curve shortening flow in a 3-dimensional pseudohermitian manifold</title><author>Pan, Shujing ; Sun, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-15bc48141f12321b90fabc48d457d858028a6861428cd4a203ebfd73524657fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Singularities</topic><topic>Systems Theory</topic><topic>Theoretical</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Shujing</creatorcontrib><creatorcontrib>Sun, Jun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Shujing</au><au>Sun, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curve shortening flow in a 3-dimensional pseudohermitian manifold</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>60</volume><issue>6</issue><artnum>212</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>In this paper, we introduce a curve shortening flow in a 3-dimensional pseudohermitian manifold with vanishing torsion. The flow preserves the Legendrian condition and decreases the length of curves. The stationary solution of our flow is a Legendrian geodesic. We classify the singularity and prove some convergence results. Moreover, we study the flow in Heisenberg group especially with Type I singularity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-021-02062-x</doi></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2021-12, Vol.60 (6), Article 212
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2565482317
source Springer Nature - Complete Springer Journals
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Control
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Singularities
Systems Theory
Theoretical
Three dimensional flow
title Curve shortening flow in a 3-dimensional pseudohermitian manifold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curve%20shortening%20flow%20in%20a%203-dimensional%20pseudohermitian%20manifold&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Pan,%20Shujing&rft.date=2021-12-01&rft.volume=60&rft.issue=6&rft.artnum=212&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-021-02062-x&rft_dat=%3Cproquest_cross%3E2565482317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565482317&rft_id=info:pmid/&rfr_iscdi=true