Simulation of electron energy loss spectra with the turboEELS and thermo_pw codes

For some materials like noble metals, electron energy loss spectra have a complex structure that makes them difficult to analyze without the help of ab initio calculations. Various theoretical approaches can be used for this purpose, among which the time-dependent density functional perturbation the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2018-12, Vol.1136 (1), p.12008
Hauptverfasser: Motornyi, Oleksandr, Raynaud, Michèle, Dal Corso, Andrea, Vast, Nathalie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12008
container_title Journal of physics. Conference series
container_volume 1136
creator Motornyi, Oleksandr
Raynaud, Michèle
Dal Corso, Andrea
Vast, Nathalie
description For some materials like noble metals, electron energy loss spectra have a complex structure that makes them difficult to analyze without the help of ab initio calculations. Various theoretical approaches can be used for this purpose, among which the time-dependent density functional perturbation theory (TDDFPT) which has been widely used to study plasmons in a number of bulk and surface systems. In the present paper we present a comparison of the results and performance of two different numerical implementations of TDDFPT: the Sternheimer and Liouville-Lanczos methods. The former approach is implemented in the thermo_pw module and the latter one in the turboEELS code of the QUANTUM ESPRESSO package for electronic structure calculations. In the present paper a comparison is made for bulk bismuth, a semimetal, taking into account spin-orbit coupling, as well as for bulk gold, a noble metal. We show that for these two examples, both codes gives identical results and the turboEELS code has a better performance than the thermo_pw code, and point out in which cases the usage of thermo_pw alone or of both codes can be advantageous.
doi_str_mv 10.1088/1742-6596/1136/1/012008
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2565412432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565412432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-a5a2dfc881d62ce24d30c30d4056704b195454c593a81cc44f3f1f1ba3a2bc8a3</originalsourceid><addsrcrecordid>eNqFkFtLwzAUgIMoOKe_wYBvQl2ubfYoY94YqFSfQ5omrqNratIy9u9NqUwEwTwkh5PvnMP5ALjE6AYjIWY4YyRJ-TydYUzjNUOYICSOwOTwc3yIhTgFZyFsEKLxZBPwmlfbvlZd5RroLDS10Z2PsWmM_9jD2oUAQzskFdxV3Rp2awO73hduuVzlUDXlkPFbJ9sd1K404RycWFUHc_H9TsH73fJt8ZCsnu8fF7erRDNMu0RxRUqrhcBlSrQhrKRIU1QyxNMMsQLPOeNM8zlVAmvNmKUWW1woqkihhaJTcDX2bb377E3o5Mb1vokjJeEpZ5gwSiKVjZT2cRVvrGx9tVV-LzGSgz85mJGDJTn4k1iO_mLl9VhZufan9dPLIv8Nyra0EaZ_wP-N-AKHFn-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565412432</pqid></control><display><type>article</type><title>Simulation of electron energy loss spectra with the turboEELS and thermo_pw codes</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Motornyi, Oleksandr ; Raynaud, Michèle ; Dal Corso, Andrea ; Vast, Nathalie</creator><creatorcontrib>Motornyi, Oleksandr ; Raynaud, Michèle ; Dal Corso, Andrea ; Vast, Nathalie</creatorcontrib><description>For some materials like noble metals, electron energy loss spectra have a complex structure that makes them difficult to analyze without the help of ab initio calculations. Various theoretical approaches can be used for this purpose, among which the time-dependent density functional perturbation theory (TDDFPT) which has been widely used to study plasmons in a number of bulk and surface systems. In the present paper we present a comparison of the results and performance of two different numerical implementations of TDDFPT: the Sternheimer and Liouville-Lanczos methods. The former approach is implemented in the thermo_pw module and the latter one in the turboEELS code of the QUANTUM ESPRESSO package for electronic structure calculations. In the present paper a comparison is made for bulk bismuth, a semimetal, taking into account spin-orbit coupling, as well as for bulk gold, a noble metal. We show that for these two examples, both codes gives identical results and the turboEELS code has a better performance than the thermo_pw code, and point out in which cases the usage of thermo_pw alone or of both codes can be advantageous.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1136/1/012008</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Bismuth ; Codes ; Electronic structure ; Energy dissipation ; Mathematical analysis ; Noble metals ; Perturbation theory ; Plasmons ; Spin-orbit interactions</subject><ispartof>Journal of physics. Conference series, 2018-12, Vol.1136 (1), p.12008</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-a5a2dfc881d62ce24d30c30d4056704b195454c593a81cc44f3f1f1ba3a2bc8a3</citedby><cites>FETCH-LOGICAL-c413t-a5a2dfc881d62ce24d30c30d4056704b195454c593a81cc44f3f1f1ba3a2bc8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1136/1/012008/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Motornyi, Oleksandr</creatorcontrib><creatorcontrib>Raynaud, Michèle</creatorcontrib><creatorcontrib>Dal Corso, Andrea</creatorcontrib><creatorcontrib>Vast, Nathalie</creatorcontrib><title>Simulation of electron energy loss spectra with the turboEELS and thermo_pw codes</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>For some materials like noble metals, electron energy loss spectra have a complex structure that makes them difficult to analyze without the help of ab initio calculations. Various theoretical approaches can be used for this purpose, among which the time-dependent density functional perturbation theory (TDDFPT) which has been widely used to study plasmons in a number of bulk and surface systems. In the present paper we present a comparison of the results and performance of two different numerical implementations of TDDFPT: the Sternheimer and Liouville-Lanczos methods. The former approach is implemented in the thermo_pw module and the latter one in the turboEELS code of the QUANTUM ESPRESSO package for electronic structure calculations. In the present paper a comparison is made for bulk bismuth, a semimetal, taking into account spin-orbit coupling, as well as for bulk gold, a noble metal. We show that for these two examples, both codes gives identical results and the turboEELS code has a better performance than the thermo_pw code, and point out in which cases the usage of thermo_pw alone or of both codes can be advantageous.</description><subject>Bismuth</subject><subject>Codes</subject><subject>Electronic structure</subject><subject>Energy dissipation</subject><subject>Mathematical analysis</subject><subject>Noble metals</subject><subject>Perturbation theory</subject><subject>Plasmons</subject><subject>Spin-orbit interactions</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkFtLwzAUgIMoOKe_wYBvQl2ubfYoY94YqFSfQ5omrqNratIy9u9NqUwEwTwkh5PvnMP5ALjE6AYjIWY4YyRJ-TydYUzjNUOYICSOwOTwc3yIhTgFZyFsEKLxZBPwmlfbvlZd5RroLDS10Z2PsWmM_9jD2oUAQzskFdxV3Rp2awO73hduuVzlUDXlkPFbJ9sd1K404RycWFUHc_H9TsH73fJt8ZCsnu8fF7erRDNMu0RxRUqrhcBlSrQhrKRIU1QyxNMMsQLPOeNM8zlVAmvNmKUWW1woqkihhaJTcDX2bb377E3o5Mb1vokjJeEpZ5gwSiKVjZT2cRVvrGx9tVV-LzGSgz85mJGDJTn4k1iO_mLl9VhZufan9dPLIv8Nyra0EaZ_wP-N-AKHFn-A</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Motornyi, Oleksandr</creator><creator>Raynaud, Michèle</creator><creator>Dal Corso, Andrea</creator><creator>Vast, Nathalie</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20181201</creationdate><title>Simulation of electron energy loss spectra with the turboEELS and thermo_pw codes</title><author>Motornyi, Oleksandr ; Raynaud, Michèle ; Dal Corso, Andrea ; Vast, Nathalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-a5a2dfc881d62ce24d30c30d4056704b195454c593a81cc44f3f1f1ba3a2bc8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bismuth</topic><topic>Codes</topic><topic>Electronic structure</topic><topic>Energy dissipation</topic><topic>Mathematical analysis</topic><topic>Noble metals</topic><topic>Perturbation theory</topic><topic>Plasmons</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motornyi, Oleksandr</creatorcontrib><creatorcontrib>Raynaud, Michèle</creatorcontrib><creatorcontrib>Dal Corso, Andrea</creatorcontrib><creatorcontrib>Vast, Nathalie</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motornyi, Oleksandr</au><au>Raynaud, Michèle</au><au>Dal Corso, Andrea</au><au>Vast, Nathalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of electron energy loss spectra with the turboEELS and thermo_pw codes</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>1136</volume><issue>1</issue><spage>12008</spage><pages>12008-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>For some materials like noble metals, electron energy loss spectra have a complex structure that makes them difficult to analyze without the help of ab initio calculations. Various theoretical approaches can be used for this purpose, among which the time-dependent density functional perturbation theory (TDDFPT) which has been widely used to study plasmons in a number of bulk and surface systems. In the present paper we present a comparison of the results and performance of two different numerical implementations of TDDFPT: the Sternheimer and Liouville-Lanczos methods. The former approach is implemented in the thermo_pw module and the latter one in the turboEELS code of the QUANTUM ESPRESSO package for electronic structure calculations. In the present paper a comparison is made for bulk bismuth, a semimetal, taking into account spin-orbit coupling, as well as for bulk gold, a noble metal. We show that for these two examples, both codes gives identical results and the turboEELS code has a better performance than the thermo_pw code, and point out in which cases the usage of thermo_pw alone or of both codes can be advantageous.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1136/1/012008</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2018-12, Vol.1136 (1), p.12008
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2565412432
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bismuth
Codes
Electronic structure
Energy dissipation
Mathematical analysis
Noble metals
Perturbation theory
Plasmons
Spin-orbit interactions
title Simulation of electron energy loss spectra with the turboEELS and thermo_pw codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20electron%20energy%20loss%20spectra%20with%20the%20turboEELS%20and%20thermo_pw%20codes&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Motornyi,%20Oleksandr&rft.date=2018-12-01&rft.volume=1136&rft.issue=1&rft.spage=12008&rft.pages=12008-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1136/1/012008&rft_dat=%3Cproquest_iop_j%3E2565412432%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565412432&rft_id=info:pmid/&rfr_iscdi=true