Investigation of penetration of non-axisymmetric bodies into the soil with friction

The problem of impact and penetration of rigid conical and pyramidal bodies along the normal to the free surface of a half-space occupied by an elastoplastic medium is considered. The medium is linearly compressible and obeys the Mises-Schleicher plasticity condition. The investigated cone, pyramid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-02, Vol.1158 (3), p.32025
Hauptverfasser: Linnik, E Yu, Kotov, V L, Sayapin, S V, Alheddo, Madian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 32025
container_title Journal of physics. Conference series
container_volume 1158
creator Linnik, E Yu
Kotov, V L
Sayapin, S V
Alheddo, Madian
description The problem of impact and penetration of rigid conical and pyramidal bodies along the normal to the free surface of a half-space occupied by an elastoplastic medium is considered. The medium is linearly compressible and obeys the Mises-Schleicher plasticity condition. The investigated cone, pyramid and four-ray star bodies have the same area of the base, the normal to the lateral surface of the bodies makes with the direction of motion a constant angle equal to the angle of the half-solution of the cone. Similarly, bodies of the same height are considered. The results of numerical calculations of the penetration of bodies with constant velocity are given. It is established that the resistance to penetration can be described by a quadratic dependence on the penetration rate in the framework of the two-term Rezal's penetration law. It is noted that the minimum force of resistance to penetration is possessed by a conical striker. The difference in the resistance to penetration for other bodies of the same height is within the error of numerical calculations of 10-20%.
doi_str_mv 10.1088/1742-6596/1158/3/032025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565333499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565333499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-8b46c27f1092ff833c995f5e5a90e12ba9014c7acbe990ee281603b2e314f89f3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm0-mja5lOHHZKAwvQ5tlriMralJpu7fm1KZCIK5Ock573tOzgPAOUZXGHGe46ogWclEmWPMeE5zRAki7ACM9pXD_Z3zY3ASwgohmk41AvNp-65DtK91tK6FzsBOtzr6_bN1bVZ_2rDbbFLaKti4hdUB2jY6GJcaBmfX8MPGJTSp3NtOwZGp10GffccxeLm9eZ7cZ7PHu-nkepapAtOY8aYoFakMRoIYwylVQjDDNKsF0pg0KeBCVbVqtEgZTTguEW2IprgwXBg6BhdD3867t23aQq7c1rdppCSsZGnBQoikqgaV8i4Er43svN3Uficxkj1B2bORPSfZE5RUDgST83JwWtf9tH54msx_C2W36D9D_xD_N-ILoTSA7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565333499</pqid></control><display><type>article</type><title>Investigation of penetration of non-axisymmetric bodies into the soil with friction</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Linnik, E Yu ; Kotov, V L ; Sayapin, S V ; Alheddo, Madian</creator><creatorcontrib>Linnik, E Yu ; Kotov, V L ; Sayapin, S V ; Alheddo, Madian</creatorcontrib><description>The problem of impact and penetration of rigid conical and pyramidal bodies along the normal to the free surface of a half-space occupied by an elastoplastic medium is considered. The medium is linearly compressible and obeys the Mises-Schleicher plasticity condition. The investigated cone, pyramid and four-ray star bodies have the same area of the base, the normal to the lateral surface of the bodies makes with the direction of motion a constant angle equal to the angle of the half-solution of the cone. Similarly, bodies of the same height are considered. The results of numerical calculations of the penetration of bodies with constant velocity are given. It is established that the resistance to penetration can be described by a quadratic dependence on the penetration rate in the framework of the two-term Rezal's penetration law. It is noted that the minimum force of resistance to penetration is possessed by a conical striker. The difference in the resistance to penetration for other bodies of the same height is within the error of numerical calculations of 10-20%.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1158/3/032025</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Axisymmetric bodies ; Compressibility ; Conical bodies ; Elastoplasticity ; Free surfaces ; Half spaces ; Mathematical analysis ; Nonaxisymmetric bodies ; Numerical analysis ; Penetration ; Penetration resistance ; Pyramidal bodies ; Soil investigations</subject><ispartof>Journal of physics. Conference series, 2019-02, Vol.1158 (3), p.32025</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-8b46c27f1092ff833c995f5e5a90e12ba9014c7acbe990ee281603b2e314f89f3</citedby><cites>FETCH-LOGICAL-c413t-8b46c27f1092ff833c995f5e5a90e12ba9014c7acbe990ee281603b2e314f89f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1158/3/032025/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Linnik, E Yu</creatorcontrib><creatorcontrib>Kotov, V L</creatorcontrib><creatorcontrib>Sayapin, S V</creatorcontrib><creatorcontrib>Alheddo, Madian</creatorcontrib><title>Investigation of penetration of non-axisymmetric bodies into the soil with friction</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The problem of impact and penetration of rigid conical and pyramidal bodies along the normal to the free surface of a half-space occupied by an elastoplastic medium is considered. The medium is linearly compressible and obeys the Mises-Schleicher plasticity condition. The investigated cone, pyramid and four-ray star bodies have the same area of the base, the normal to the lateral surface of the bodies makes with the direction of motion a constant angle equal to the angle of the half-solution of the cone. Similarly, bodies of the same height are considered. The results of numerical calculations of the penetration of bodies with constant velocity are given. It is established that the resistance to penetration can be described by a quadratic dependence on the penetration rate in the framework of the two-term Rezal's penetration law. It is noted that the minimum force of resistance to penetration is possessed by a conical striker. The difference in the resistance to penetration for other bodies of the same height is within the error of numerical calculations of 10-20%.</description><subject>Axisymmetric bodies</subject><subject>Compressibility</subject><subject>Conical bodies</subject><subject>Elastoplasticity</subject><subject>Free surfaces</subject><subject>Half spaces</subject><subject>Mathematical analysis</subject><subject>Nonaxisymmetric bodies</subject><subject>Numerical analysis</subject><subject>Penetration</subject><subject>Penetration resistance</subject><subject>Pyramidal bodies</subject><subject>Soil investigations</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm0-mja5lOHHZKAwvQ5tlriMralJpu7fm1KZCIK5Ock573tOzgPAOUZXGHGe46ogWclEmWPMeE5zRAki7ACM9pXD_Z3zY3ASwgohmk41AvNp-65DtK91tK6FzsBOtzr6_bN1bVZ_2rDbbFLaKti4hdUB2jY6GJcaBmfX8MPGJTSp3NtOwZGp10GffccxeLm9eZ7cZ7PHu-nkepapAtOY8aYoFakMRoIYwylVQjDDNKsF0pg0KeBCVbVqtEgZTTguEW2IprgwXBg6BhdD3867t23aQq7c1rdppCSsZGnBQoikqgaV8i4Er43svN3Uficxkj1B2bORPSfZE5RUDgST83JwWtf9tH54msx_C2W36D9D_xD_N-ILoTSA7w</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Linnik, E Yu</creator><creator>Kotov, V L</creator><creator>Sayapin, S V</creator><creator>Alheddo, Madian</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190201</creationdate><title>Investigation of penetration of non-axisymmetric bodies into the soil with friction</title><author>Linnik, E Yu ; Kotov, V L ; Sayapin, S V ; Alheddo, Madian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-8b46c27f1092ff833c995f5e5a90e12ba9014c7acbe990ee281603b2e314f89f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axisymmetric bodies</topic><topic>Compressibility</topic><topic>Conical bodies</topic><topic>Elastoplasticity</topic><topic>Free surfaces</topic><topic>Half spaces</topic><topic>Mathematical analysis</topic><topic>Nonaxisymmetric bodies</topic><topic>Numerical analysis</topic><topic>Penetration</topic><topic>Penetration resistance</topic><topic>Pyramidal bodies</topic><topic>Soil investigations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linnik, E Yu</creatorcontrib><creatorcontrib>Kotov, V L</creatorcontrib><creatorcontrib>Sayapin, S V</creatorcontrib><creatorcontrib>Alheddo, Madian</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linnik, E Yu</au><au>Kotov, V L</au><au>Sayapin, S V</au><au>Alheddo, Madian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of penetration of non-axisymmetric bodies into the soil with friction</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>1158</volume><issue>3</issue><spage>32025</spage><pages>32025-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The problem of impact and penetration of rigid conical and pyramidal bodies along the normal to the free surface of a half-space occupied by an elastoplastic medium is considered. The medium is linearly compressible and obeys the Mises-Schleicher plasticity condition. The investigated cone, pyramid and four-ray star bodies have the same area of the base, the normal to the lateral surface of the bodies makes with the direction of motion a constant angle equal to the angle of the half-solution of the cone. Similarly, bodies of the same height are considered. The results of numerical calculations of the penetration of bodies with constant velocity are given. It is established that the resistance to penetration can be described by a quadratic dependence on the penetration rate in the framework of the two-term Rezal's penetration law. It is noted that the minimum force of resistance to penetration is possessed by a conical striker. The difference in the resistance to penetration for other bodies of the same height is within the error of numerical calculations of 10-20%.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1158/3/032025</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2019-02, Vol.1158 (3), p.32025
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2565333499
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Axisymmetric bodies
Compressibility
Conical bodies
Elastoplasticity
Free surfaces
Half spaces
Mathematical analysis
Nonaxisymmetric bodies
Numerical analysis
Penetration
Penetration resistance
Pyramidal bodies
Soil investigations
title Investigation of penetration of non-axisymmetric bodies into the soil with friction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20penetration%20of%20non-axisymmetric%20bodies%20into%20the%20soil%20with%20friction&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Linnik,%20E%20Yu&rft.date=2019-02-01&rft.volume=1158&rft.issue=3&rft.spage=32025&rft.pages=32025-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1158/3/032025&rft_dat=%3Cproquest_cross%3E2565333499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565333499&rft_id=info:pmid/&rfr_iscdi=true