Investigation of penetration of non-axisymmetric bodies into the soil with friction
The problem of impact and penetration of rigid conical and pyramidal bodies along the normal to the free surface of a half-space occupied by an elastoplastic medium is considered. The medium is linearly compressible and obeys the Mises-Schleicher plasticity condition. The investigated cone, pyramid...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2019-02, Vol.1158 (3), p.32025 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 32025 |
container_title | Journal of physics. Conference series |
container_volume | 1158 |
creator | Linnik, E Yu Kotov, V L Sayapin, S V Alheddo, Madian |
description | The problem of impact and penetration of rigid conical and pyramidal bodies along the normal to the free surface of a half-space occupied by an elastoplastic medium is considered. The medium is linearly compressible and obeys the Mises-Schleicher plasticity condition. The investigated cone, pyramid and four-ray star bodies have the same area of the base, the normal to the lateral surface of the bodies makes with the direction of motion a constant angle equal to the angle of the half-solution of the cone. Similarly, bodies of the same height are considered. The results of numerical calculations of the penetration of bodies with constant velocity are given. It is established that the resistance to penetration can be described by a quadratic dependence on the penetration rate in the framework of the two-term Rezal's penetration law. It is noted that the minimum force of resistance to penetration is possessed by a conical striker. The difference in the resistance to penetration for other bodies of the same height is within the error of numerical calculations of 10-20%. |
doi_str_mv | 10.1088/1742-6596/1158/3/032025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565333499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565333499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-8b46c27f1092ff833c995f5e5a90e12ba9014c7acbe990ee281603b2e314f89f3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm0-mja5lOHHZKAwvQ5tlriMralJpu7fm1KZCIK5Ock573tOzgPAOUZXGHGe46ogWclEmWPMeE5zRAki7ACM9pXD_Z3zY3ASwgohmk41AvNp-65DtK91tK6FzsBOtzr6_bN1bVZ_2rDbbFLaKti4hdUB2jY6GJcaBmfX8MPGJTSp3NtOwZGp10GffccxeLm9eZ7cZ7PHu-nkepapAtOY8aYoFakMRoIYwylVQjDDNKsF0pg0KeBCVbVqtEgZTTguEW2IprgwXBg6BhdD3867t23aQq7c1rdppCSsZGnBQoikqgaV8i4Er43svN3Uficxkj1B2bORPSfZE5RUDgST83JwWtf9tH54msx_C2W36D9D_xD_N-ILoTSA7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565333499</pqid></control><display><type>article</type><title>Investigation of penetration of non-axisymmetric bodies into the soil with friction</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Linnik, E Yu ; Kotov, V L ; Sayapin, S V ; Alheddo, Madian</creator><creatorcontrib>Linnik, E Yu ; Kotov, V L ; Sayapin, S V ; Alheddo, Madian</creatorcontrib><description>The problem of impact and penetration of rigid conical and pyramidal bodies along the normal to the free surface of a half-space occupied by an elastoplastic medium is considered. The medium is linearly compressible and obeys the Mises-Schleicher plasticity condition. The investigated cone, pyramid and four-ray star bodies have the same area of the base, the normal to the lateral surface of the bodies makes with the direction of motion a constant angle equal to the angle of the half-solution of the cone. Similarly, bodies of the same height are considered. The results of numerical calculations of the penetration of bodies with constant velocity are given. It is established that the resistance to penetration can be described by a quadratic dependence on the penetration rate in the framework of the two-term Rezal's penetration law. It is noted that the minimum force of resistance to penetration is possessed by a conical striker. The difference in the resistance to penetration for other bodies of the same height is within the error of numerical calculations of 10-20%.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1158/3/032025</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Axisymmetric bodies ; Compressibility ; Conical bodies ; Elastoplasticity ; Free surfaces ; Half spaces ; Mathematical analysis ; Nonaxisymmetric bodies ; Numerical analysis ; Penetration ; Penetration resistance ; Pyramidal bodies ; Soil investigations</subject><ispartof>Journal of physics. Conference series, 2019-02, Vol.1158 (3), p.32025</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-8b46c27f1092ff833c995f5e5a90e12ba9014c7acbe990ee281603b2e314f89f3</citedby><cites>FETCH-LOGICAL-c413t-8b46c27f1092ff833c995f5e5a90e12ba9014c7acbe990ee281603b2e314f89f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1158/3/032025/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Linnik, E Yu</creatorcontrib><creatorcontrib>Kotov, V L</creatorcontrib><creatorcontrib>Sayapin, S V</creatorcontrib><creatorcontrib>Alheddo, Madian</creatorcontrib><title>Investigation of penetration of non-axisymmetric bodies into the soil with friction</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The problem of impact and penetration of rigid conical and pyramidal bodies along the normal to the free surface of a half-space occupied by an elastoplastic medium is considered. The medium is linearly compressible and obeys the Mises-Schleicher plasticity condition. The investigated cone, pyramid and four-ray star bodies have the same area of the base, the normal to the lateral surface of the bodies makes with the direction of motion a constant angle equal to the angle of the half-solution of the cone. Similarly, bodies of the same height are considered. The results of numerical calculations of the penetration of bodies with constant velocity are given. It is established that the resistance to penetration can be described by a quadratic dependence on the penetration rate in the framework of the two-term Rezal's penetration law. It is noted that the minimum force of resistance to penetration is possessed by a conical striker. The difference in the resistance to penetration for other bodies of the same height is within the error of numerical calculations of 10-20%.</description><subject>Axisymmetric bodies</subject><subject>Compressibility</subject><subject>Conical bodies</subject><subject>Elastoplasticity</subject><subject>Free surfaces</subject><subject>Half spaces</subject><subject>Mathematical analysis</subject><subject>Nonaxisymmetric bodies</subject><subject>Numerical analysis</subject><subject>Penetration</subject><subject>Penetration resistance</subject><subject>Pyramidal bodies</subject><subject>Soil investigations</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm0-mja5lOHHZKAwvQ5tlriMralJpu7fm1KZCIK5Ock573tOzgPAOUZXGHGe46ogWclEmWPMeE5zRAki7ACM9pXD_Z3zY3ASwgohmk41AvNp-65DtK91tK6FzsBOtzr6_bN1bVZ_2rDbbFLaKti4hdUB2jY6GJcaBmfX8MPGJTSp3NtOwZGp10GffccxeLm9eZ7cZ7PHu-nkepapAtOY8aYoFakMRoIYwylVQjDDNKsF0pg0KeBCVbVqtEgZTTguEW2IprgwXBg6BhdD3867t23aQq7c1rdppCSsZGnBQoikqgaV8i4Er43svN3Uficxkj1B2bORPSfZE5RUDgST83JwWtf9tH54msx_C2W36D9D_xD_N-ILoTSA7w</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Linnik, E Yu</creator><creator>Kotov, V L</creator><creator>Sayapin, S V</creator><creator>Alheddo, Madian</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190201</creationdate><title>Investigation of penetration of non-axisymmetric bodies into the soil with friction</title><author>Linnik, E Yu ; Kotov, V L ; Sayapin, S V ; Alheddo, Madian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-8b46c27f1092ff833c995f5e5a90e12ba9014c7acbe990ee281603b2e314f89f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axisymmetric bodies</topic><topic>Compressibility</topic><topic>Conical bodies</topic><topic>Elastoplasticity</topic><topic>Free surfaces</topic><topic>Half spaces</topic><topic>Mathematical analysis</topic><topic>Nonaxisymmetric bodies</topic><topic>Numerical analysis</topic><topic>Penetration</topic><topic>Penetration resistance</topic><topic>Pyramidal bodies</topic><topic>Soil investigations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linnik, E Yu</creatorcontrib><creatorcontrib>Kotov, V L</creatorcontrib><creatorcontrib>Sayapin, S V</creatorcontrib><creatorcontrib>Alheddo, Madian</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linnik, E Yu</au><au>Kotov, V L</au><au>Sayapin, S V</au><au>Alheddo, Madian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of penetration of non-axisymmetric bodies into the soil with friction</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>1158</volume><issue>3</issue><spage>32025</spage><pages>32025-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The problem of impact and penetration of rigid conical and pyramidal bodies along the normal to the free surface of a half-space occupied by an elastoplastic medium is considered. The medium is linearly compressible and obeys the Mises-Schleicher plasticity condition. The investigated cone, pyramid and four-ray star bodies have the same area of the base, the normal to the lateral surface of the bodies makes with the direction of motion a constant angle equal to the angle of the half-solution of the cone. Similarly, bodies of the same height are considered. The results of numerical calculations of the penetration of bodies with constant velocity are given. It is established that the resistance to penetration can be described by a quadratic dependence on the penetration rate in the framework of the two-term Rezal's penetration law. It is noted that the minimum force of resistance to penetration is possessed by a conical striker. The difference in the resistance to penetration for other bodies of the same height is within the error of numerical calculations of 10-20%.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1158/3/032025</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2019-02, Vol.1158 (3), p.32025 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2565333499 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Axisymmetric bodies Compressibility Conical bodies Elastoplasticity Free surfaces Half spaces Mathematical analysis Nonaxisymmetric bodies Numerical analysis Penetration Penetration resistance Pyramidal bodies Soil investigations |
title | Investigation of penetration of non-axisymmetric bodies into the soil with friction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20penetration%20of%20non-axisymmetric%20bodies%20into%20the%20soil%20with%20friction&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Linnik,%20E%20Yu&rft.date=2019-02-01&rft.volume=1158&rft.issue=3&rft.spage=32025&rft.pages=32025-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1158/3/032025&rft_dat=%3Cproquest_cross%3E2565333499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565333499&rft_id=info:pmid/&rfr_iscdi=true |