New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications
Fibre metal laminates, hybrid composite materials built up from interlaced layers of thin metals and fibre reinforced adhesives, are future-proof materials used in the production of passenger aircraft, yachts, sailplanes, racing cars, and sports equipment. The most commercially available fibre–metal...
Gespeichert in:
Veröffentlicht in: | Journal of composites science 2021-08, Vol.5 (8), p.217 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 217 |
container_title | Journal of composites science |
container_volume | 5 |
creator | Trzepieciński, Tomasz Najm, Sherwan Mohammed Sbayti, Manel Belhadjsalah, Hedi Szpunar, Marcin Lemu, Hirpa G. |
description | Fibre metal laminates, hybrid composite materials built up from interlaced layers of thin metals and fibre reinforced adhesives, are future-proof materials used in the production of passenger aircraft, yachts, sailplanes, racing cars, and sports equipment. The most commercially available fibre–metal laminates are carbon reinforced aluminium laminates, aramid reinforced aluminium laminates, and glass reinforced aluminium laminates. This review emphasises the developing technologies for forming hybrid metal–polymer composites (HMPC). New advances and future possibilities in the forming technology for this group of materials is discussed. A brief classification of the currently available types of FMLs and details of their methods of fabrication are also presented. Particular emphasis was placed on the methods of shaping FMLs using plastic working techniques, i.e., incremental sheet forming, shot peening forming, press brake bending, electro-magnetic forming, hydroforming, and stamping. Current progress and the future directions of research on HMPCs are summarised and presented. |
doi_str_mv | 10.3390/jcs5080217 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565290715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565290715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-38dd8cf796a20db453a81c49ed8e1abd53c838686534f5e25423ec9aa4e88f523</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhosoOOZufIKAd0I1TZo2uSzDOWHqLjbwrqTJ6cxom5q0Sq_0HXxDn8TKBL06P5z_O-fnD4LzCF9RKvD1XnmGOSZRehRMCMNxGKfp0_E_fRrMvN9jjEkqYizoJHh_gDeU6VfZKPBINhot-q53gNbWe1OYynRmXJgGLayrTbNDG1DPja3sbkC2RMuhcEaje-hk9fXxubbVUINDc1u31ptuRLce9A-fgbO-lQpQ1raVUbIztvFnwUkpKw-z3zkNtoubzXwZrh5v7-bZKlREsC6kXGuuylQkkmBdxIxKHqlYgOYQyUIzqjjlCU8YjUsGhMWEghJSxsB5yQidBheHu62zLz34Lt_b3jXjy5ywhBGB04iNrsuDS41ZvYMyb52ppRvyCOc_Hed_HdNvTEVxgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565290715</pqid></control><display><type>article</type><title>New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Trzepieciński, Tomasz ; Najm, Sherwan Mohammed ; Sbayti, Manel ; Belhadjsalah, Hedi ; Szpunar, Marcin ; Lemu, Hirpa G.</creator><creatorcontrib>Trzepieciński, Tomasz ; Najm, Sherwan Mohammed ; Sbayti, Manel ; Belhadjsalah, Hedi ; Szpunar, Marcin ; Lemu, Hirpa G.</creatorcontrib><description>Fibre metal laminates, hybrid composite materials built up from interlaced layers of thin metals and fibre reinforced adhesives, are future-proof materials used in the production of passenger aircraft, yachts, sailplanes, racing cars, and sports equipment. The most commercially available fibre–metal laminates are carbon reinforced aluminium laminates, aramid reinforced aluminium laminates, and glass reinforced aluminium laminates. This review emphasises the developing technologies for forming hybrid metal–polymer composites (HMPC). New advances and future possibilities in the forming technology for this group of materials is discussed. A brief classification of the currently available types of FMLs and details of their methods of fabrication are also presented. Particular emphasis was placed on the methods of shaping FMLs using plastic working techniques, i.e., incremental sheet forming, shot peening forming, press brake bending, electro-magnetic forming, hydroforming, and stamping. Current progress and the future directions of research on HMPCs are summarised and presented.</description><identifier>ISSN: 2504-477X</identifier><identifier>EISSN: 2504-477X</identifier><identifier>DOI: 10.3390/jcs5080217</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aircraft industry ; Aluminum ; Aviation ; Brake forming ; Brake presses ; Carbon ; Composite materials ; Epoxy resins ; Fiber composites ; Fiber-metal laminates ; Forming techniques ; Gliders ; Hybrid composites ; Hydroforming ; Laboratories ; Laminates ; Magnetic forming ; Metals ; Methods ; Nanoparticles ; Passenger aircraft ; Polymer matrix composites ; Polymers ; Race cars ; Sporting goods ; Thin films ; Titanium ; Unmanned aerial vehicles ; Weight reduction</subject><ispartof>Journal of composites science, 2021-08, Vol.5 (8), p.217</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-38dd8cf796a20db453a81c49ed8e1abd53c838686534f5e25423ec9aa4e88f523</citedby><cites>FETCH-LOGICAL-c295t-38dd8cf796a20db453a81c49ed8e1abd53c838686534f5e25423ec9aa4e88f523</cites><orcidid>0000-0003-3412-0716 ; 0000-0001-9588-4707 ; 0000-0002-4366-0135 ; 0000-0003-1580-5357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Trzepieciński, Tomasz</creatorcontrib><creatorcontrib>Najm, Sherwan Mohammed</creatorcontrib><creatorcontrib>Sbayti, Manel</creatorcontrib><creatorcontrib>Belhadjsalah, Hedi</creatorcontrib><creatorcontrib>Szpunar, Marcin</creatorcontrib><creatorcontrib>Lemu, Hirpa G.</creatorcontrib><title>New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications</title><title>Journal of composites science</title><description>Fibre metal laminates, hybrid composite materials built up from interlaced layers of thin metals and fibre reinforced adhesives, are future-proof materials used in the production of passenger aircraft, yachts, sailplanes, racing cars, and sports equipment. The most commercially available fibre–metal laminates are carbon reinforced aluminium laminates, aramid reinforced aluminium laminates, and glass reinforced aluminium laminates. This review emphasises the developing technologies for forming hybrid metal–polymer composites (HMPC). New advances and future possibilities in the forming technology for this group of materials is discussed. A brief classification of the currently available types of FMLs and details of their methods of fabrication are also presented. Particular emphasis was placed on the methods of shaping FMLs using plastic working techniques, i.e., incremental sheet forming, shot peening forming, press brake bending, electro-magnetic forming, hydroforming, and stamping. Current progress and the future directions of research on HMPCs are summarised and presented.</description><subject>Aircraft industry</subject><subject>Aluminum</subject><subject>Aviation</subject><subject>Brake forming</subject><subject>Brake presses</subject><subject>Carbon</subject><subject>Composite materials</subject><subject>Epoxy resins</subject><subject>Fiber composites</subject><subject>Fiber-metal laminates</subject><subject>Forming techniques</subject><subject>Gliders</subject><subject>Hybrid composites</subject><subject>Hydroforming</subject><subject>Laboratories</subject><subject>Laminates</subject><subject>Magnetic forming</subject><subject>Metals</subject><subject>Methods</subject><subject>Nanoparticles</subject><subject>Passenger aircraft</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Race cars</subject><subject>Sporting goods</subject><subject>Thin films</subject><subject>Titanium</subject><subject>Unmanned aerial vehicles</subject><subject>Weight reduction</subject><issn>2504-477X</issn><issn>2504-477X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkNFKwzAUhosoOOZufIKAd0I1TZo2uSzDOWHqLjbwrqTJ6cxom5q0Sq_0HXxDn8TKBL06P5z_O-fnD4LzCF9RKvD1XnmGOSZRehRMCMNxGKfp0_E_fRrMvN9jjEkqYizoJHh_gDeU6VfZKPBINhot-q53gNbWe1OYynRmXJgGLayrTbNDG1DPja3sbkC2RMuhcEaje-hk9fXxubbVUINDc1u31ptuRLce9A-fgbO-lQpQ1raVUbIztvFnwUkpKw-z3zkNtoubzXwZrh5v7-bZKlREsC6kXGuuylQkkmBdxIxKHqlYgOYQyUIzqjjlCU8YjUsGhMWEghJSxsB5yQidBheHu62zLz34Lt_b3jXjy5ywhBGB04iNrsuDS41ZvYMyb52ppRvyCOc_Hed_HdNvTEVxgQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Trzepieciński, Tomasz</creator><creator>Najm, Sherwan Mohammed</creator><creator>Sbayti, Manel</creator><creator>Belhadjsalah, Hedi</creator><creator>Szpunar, Marcin</creator><creator>Lemu, Hirpa G.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3412-0716</orcidid><orcidid>https://orcid.org/0000-0001-9588-4707</orcidid><orcidid>https://orcid.org/0000-0002-4366-0135</orcidid><orcidid>https://orcid.org/0000-0003-1580-5357</orcidid></search><sort><creationdate>20210801</creationdate><title>New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications</title><author>Trzepieciński, Tomasz ; Najm, Sherwan Mohammed ; Sbayti, Manel ; Belhadjsalah, Hedi ; Szpunar, Marcin ; Lemu, Hirpa G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-38dd8cf796a20db453a81c49ed8e1abd53c838686534f5e25423ec9aa4e88f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aircraft industry</topic><topic>Aluminum</topic><topic>Aviation</topic><topic>Brake forming</topic><topic>Brake presses</topic><topic>Carbon</topic><topic>Composite materials</topic><topic>Epoxy resins</topic><topic>Fiber composites</topic><topic>Fiber-metal laminates</topic><topic>Forming techniques</topic><topic>Gliders</topic><topic>Hybrid composites</topic><topic>Hydroforming</topic><topic>Laboratories</topic><topic>Laminates</topic><topic>Magnetic forming</topic><topic>Metals</topic><topic>Methods</topic><topic>Nanoparticles</topic><topic>Passenger aircraft</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Race cars</topic><topic>Sporting goods</topic><topic>Thin films</topic><topic>Titanium</topic><topic>Unmanned aerial vehicles</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trzepieciński, Tomasz</creatorcontrib><creatorcontrib>Najm, Sherwan Mohammed</creatorcontrib><creatorcontrib>Sbayti, Manel</creatorcontrib><creatorcontrib>Belhadjsalah, Hedi</creatorcontrib><creatorcontrib>Szpunar, Marcin</creatorcontrib><creatorcontrib>Lemu, Hirpa G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of composites science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trzepieciński, Tomasz</au><au>Najm, Sherwan Mohammed</au><au>Sbayti, Manel</au><au>Belhadjsalah, Hedi</au><au>Szpunar, Marcin</au><au>Lemu, Hirpa G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications</atitle><jtitle>Journal of composites science</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>5</volume><issue>8</issue><spage>217</spage><pages>217-</pages><issn>2504-477X</issn><eissn>2504-477X</eissn><abstract>Fibre metal laminates, hybrid composite materials built up from interlaced layers of thin metals and fibre reinforced adhesives, are future-proof materials used in the production of passenger aircraft, yachts, sailplanes, racing cars, and sports equipment. The most commercially available fibre–metal laminates are carbon reinforced aluminium laminates, aramid reinforced aluminium laminates, and glass reinforced aluminium laminates. This review emphasises the developing technologies for forming hybrid metal–polymer composites (HMPC). New advances and future possibilities in the forming technology for this group of materials is discussed. A brief classification of the currently available types of FMLs and details of their methods of fabrication are also presented. Particular emphasis was placed on the methods of shaping FMLs using plastic working techniques, i.e., incremental sheet forming, shot peening forming, press brake bending, electro-magnetic forming, hydroforming, and stamping. Current progress and the future directions of research on HMPCs are summarised and presented.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jcs5080217</doi><orcidid>https://orcid.org/0000-0003-3412-0716</orcidid><orcidid>https://orcid.org/0000-0001-9588-4707</orcidid><orcidid>https://orcid.org/0000-0002-4366-0135</orcidid><orcidid>https://orcid.org/0000-0003-1580-5357</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-477X |
ispartof | Journal of composites science, 2021-08, Vol.5 (8), p.217 |
issn | 2504-477X 2504-477X |
language | eng |
recordid | cdi_proquest_journals_2565290715 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aircraft industry Aluminum Aviation Brake forming Brake presses Carbon Composite materials Epoxy resins Fiber composites Fiber-metal laminates Forming techniques Gliders Hybrid composites Hydroforming Laboratories Laminates Magnetic forming Metals Methods Nanoparticles Passenger aircraft Polymer matrix composites Polymers Race cars Sporting goods Thin films Titanium Unmanned aerial vehicles Weight reduction |
title | New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Advances%20and%20Future%20Possibilities%20in%20Forming%20Technology%20of%20Hybrid%20Metal%E2%80%93Polymer%20Composites%20Used%20in%20Aerospace%20Applications&rft.jtitle=Journal%20of%20composites%20science&rft.au=Trzepieci%C5%84ski,%20Tomasz&rft.date=2021-08-01&rft.volume=5&rft.issue=8&rft.spage=217&rft.pages=217-&rft.issn=2504-477X&rft.eissn=2504-477X&rft_id=info:doi/10.3390/jcs5080217&rft_dat=%3Cproquest_cross%3E2565290715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565290715&rft_id=info:pmid/&rfr_iscdi=true |