New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications

Fibre metal laminates, hybrid composite materials built up from interlaced layers of thin metals and fibre reinforced adhesives, are future-proof materials used in the production of passenger aircraft, yachts, sailplanes, racing cars, and sports equipment. The most commercially available fibre–metal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composites science 2021-08, Vol.5 (8), p.217
Hauptverfasser: Trzepieciński, Tomasz, Najm, Sherwan Mohammed, Sbayti, Manel, Belhadjsalah, Hedi, Szpunar, Marcin, Lemu, Hirpa G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 217
container_title Journal of composites science
container_volume 5
creator Trzepieciński, Tomasz
Najm, Sherwan Mohammed
Sbayti, Manel
Belhadjsalah, Hedi
Szpunar, Marcin
Lemu, Hirpa G.
description Fibre metal laminates, hybrid composite materials built up from interlaced layers of thin metals and fibre reinforced adhesives, are future-proof materials used in the production of passenger aircraft, yachts, sailplanes, racing cars, and sports equipment. The most commercially available fibre–metal laminates are carbon reinforced aluminium laminates, aramid reinforced aluminium laminates, and glass reinforced aluminium laminates. This review emphasises the developing technologies for forming hybrid metal–polymer composites (HMPC). New advances and future possibilities in the forming technology for this group of materials is discussed. A brief classification of the currently available types of FMLs and details of their methods of fabrication are also presented. Particular emphasis was placed on the methods of shaping FMLs using plastic working techniques, i.e., incremental sheet forming, shot peening forming, press brake bending, electro-magnetic forming, hydroforming, and stamping. Current progress and the future directions of research on HMPCs are summarised and presented.
doi_str_mv 10.3390/jcs5080217
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565290715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565290715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-38dd8cf796a20db453a81c49ed8e1abd53c838686534f5e25423ec9aa4e88f523</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhosoOOZufIKAd0I1TZo2uSzDOWHqLjbwrqTJ6cxom5q0Sq_0HXxDn8TKBL06P5z_O-fnD4LzCF9RKvD1XnmGOSZRehRMCMNxGKfp0_E_fRrMvN9jjEkqYizoJHh_gDeU6VfZKPBINhot-q53gNbWe1OYynRmXJgGLayrTbNDG1DPja3sbkC2RMuhcEaje-hk9fXxubbVUINDc1u31ptuRLce9A-fgbO-lQpQ1raVUbIztvFnwUkpKw-z3zkNtoubzXwZrh5v7-bZKlREsC6kXGuuylQkkmBdxIxKHqlYgOYQyUIzqjjlCU8YjUsGhMWEghJSxsB5yQidBheHu62zLz34Lt_b3jXjy5ywhBGB04iNrsuDS41ZvYMyb52ppRvyCOc_Hed_HdNvTEVxgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565290715</pqid></control><display><type>article</type><title>New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Trzepieciński, Tomasz ; Najm, Sherwan Mohammed ; Sbayti, Manel ; Belhadjsalah, Hedi ; Szpunar, Marcin ; Lemu, Hirpa G.</creator><creatorcontrib>Trzepieciński, Tomasz ; Najm, Sherwan Mohammed ; Sbayti, Manel ; Belhadjsalah, Hedi ; Szpunar, Marcin ; Lemu, Hirpa G.</creatorcontrib><description>Fibre metal laminates, hybrid composite materials built up from interlaced layers of thin metals and fibre reinforced adhesives, are future-proof materials used in the production of passenger aircraft, yachts, sailplanes, racing cars, and sports equipment. The most commercially available fibre–metal laminates are carbon reinforced aluminium laminates, aramid reinforced aluminium laminates, and glass reinforced aluminium laminates. This review emphasises the developing technologies for forming hybrid metal–polymer composites (HMPC). New advances and future possibilities in the forming technology for this group of materials is discussed. A brief classification of the currently available types of FMLs and details of their methods of fabrication are also presented. Particular emphasis was placed on the methods of shaping FMLs using plastic working techniques, i.e., incremental sheet forming, shot peening forming, press brake bending, electro-magnetic forming, hydroforming, and stamping. Current progress and the future directions of research on HMPCs are summarised and presented.</description><identifier>ISSN: 2504-477X</identifier><identifier>EISSN: 2504-477X</identifier><identifier>DOI: 10.3390/jcs5080217</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aircraft industry ; Aluminum ; Aviation ; Brake forming ; Brake presses ; Carbon ; Composite materials ; Epoxy resins ; Fiber composites ; Fiber-metal laminates ; Forming techniques ; Gliders ; Hybrid composites ; Hydroforming ; Laboratories ; Laminates ; Magnetic forming ; Metals ; Methods ; Nanoparticles ; Passenger aircraft ; Polymer matrix composites ; Polymers ; Race cars ; Sporting goods ; Thin films ; Titanium ; Unmanned aerial vehicles ; Weight reduction</subject><ispartof>Journal of composites science, 2021-08, Vol.5 (8), p.217</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-38dd8cf796a20db453a81c49ed8e1abd53c838686534f5e25423ec9aa4e88f523</citedby><cites>FETCH-LOGICAL-c295t-38dd8cf796a20db453a81c49ed8e1abd53c838686534f5e25423ec9aa4e88f523</cites><orcidid>0000-0003-3412-0716 ; 0000-0001-9588-4707 ; 0000-0002-4366-0135 ; 0000-0003-1580-5357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Trzepieciński, Tomasz</creatorcontrib><creatorcontrib>Najm, Sherwan Mohammed</creatorcontrib><creatorcontrib>Sbayti, Manel</creatorcontrib><creatorcontrib>Belhadjsalah, Hedi</creatorcontrib><creatorcontrib>Szpunar, Marcin</creatorcontrib><creatorcontrib>Lemu, Hirpa G.</creatorcontrib><title>New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications</title><title>Journal of composites science</title><description>Fibre metal laminates, hybrid composite materials built up from interlaced layers of thin metals and fibre reinforced adhesives, are future-proof materials used in the production of passenger aircraft, yachts, sailplanes, racing cars, and sports equipment. The most commercially available fibre–metal laminates are carbon reinforced aluminium laminates, aramid reinforced aluminium laminates, and glass reinforced aluminium laminates. This review emphasises the developing technologies for forming hybrid metal–polymer composites (HMPC). New advances and future possibilities in the forming technology for this group of materials is discussed. A brief classification of the currently available types of FMLs and details of their methods of fabrication are also presented. Particular emphasis was placed on the methods of shaping FMLs using plastic working techniques, i.e., incremental sheet forming, shot peening forming, press brake bending, electro-magnetic forming, hydroforming, and stamping. Current progress and the future directions of research on HMPCs are summarised and presented.</description><subject>Aircraft industry</subject><subject>Aluminum</subject><subject>Aviation</subject><subject>Brake forming</subject><subject>Brake presses</subject><subject>Carbon</subject><subject>Composite materials</subject><subject>Epoxy resins</subject><subject>Fiber composites</subject><subject>Fiber-metal laminates</subject><subject>Forming techniques</subject><subject>Gliders</subject><subject>Hybrid composites</subject><subject>Hydroforming</subject><subject>Laboratories</subject><subject>Laminates</subject><subject>Magnetic forming</subject><subject>Metals</subject><subject>Methods</subject><subject>Nanoparticles</subject><subject>Passenger aircraft</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Race cars</subject><subject>Sporting goods</subject><subject>Thin films</subject><subject>Titanium</subject><subject>Unmanned aerial vehicles</subject><subject>Weight reduction</subject><issn>2504-477X</issn><issn>2504-477X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkNFKwzAUhosoOOZufIKAd0I1TZo2uSzDOWHqLjbwrqTJ6cxom5q0Sq_0HXxDn8TKBL06P5z_O-fnD4LzCF9RKvD1XnmGOSZRehRMCMNxGKfp0_E_fRrMvN9jjEkqYizoJHh_gDeU6VfZKPBINhot-q53gNbWe1OYynRmXJgGLayrTbNDG1DPja3sbkC2RMuhcEaje-hk9fXxubbVUINDc1u31ptuRLce9A-fgbO-lQpQ1raVUbIztvFnwUkpKw-z3zkNtoubzXwZrh5v7-bZKlREsC6kXGuuylQkkmBdxIxKHqlYgOYQyUIzqjjlCU8YjUsGhMWEghJSxsB5yQidBheHu62zLz34Lt_b3jXjy5ywhBGB04iNrsuDS41ZvYMyb52ppRvyCOc_Hed_HdNvTEVxgQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Trzepieciński, Tomasz</creator><creator>Najm, Sherwan Mohammed</creator><creator>Sbayti, Manel</creator><creator>Belhadjsalah, Hedi</creator><creator>Szpunar, Marcin</creator><creator>Lemu, Hirpa G.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3412-0716</orcidid><orcidid>https://orcid.org/0000-0001-9588-4707</orcidid><orcidid>https://orcid.org/0000-0002-4366-0135</orcidid><orcidid>https://orcid.org/0000-0003-1580-5357</orcidid></search><sort><creationdate>20210801</creationdate><title>New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications</title><author>Trzepieciński, Tomasz ; Najm, Sherwan Mohammed ; Sbayti, Manel ; Belhadjsalah, Hedi ; Szpunar, Marcin ; Lemu, Hirpa G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-38dd8cf796a20db453a81c49ed8e1abd53c838686534f5e25423ec9aa4e88f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aircraft industry</topic><topic>Aluminum</topic><topic>Aviation</topic><topic>Brake forming</topic><topic>Brake presses</topic><topic>Carbon</topic><topic>Composite materials</topic><topic>Epoxy resins</topic><topic>Fiber composites</topic><topic>Fiber-metal laminates</topic><topic>Forming techniques</topic><topic>Gliders</topic><topic>Hybrid composites</topic><topic>Hydroforming</topic><topic>Laboratories</topic><topic>Laminates</topic><topic>Magnetic forming</topic><topic>Metals</topic><topic>Methods</topic><topic>Nanoparticles</topic><topic>Passenger aircraft</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Race cars</topic><topic>Sporting goods</topic><topic>Thin films</topic><topic>Titanium</topic><topic>Unmanned aerial vehicles</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trzepieciński, Tomasz</creatorcontrib><creatorcontrib>Najm, Sherwan Mohammed</creatorcontrib><creatorcontrib>Sbayti, Manel</creatorcontrib><creatorcontrib>Belhadjsalah, Hedi</creatorcontrib><creatorcontrib>Szpunar, Marcin</creatorcontrib><creatorcontrib>Lemu, Hirpa G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of composites science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trzepieciński, Tomasz</au><au>Najm, Sherwan Mohammed</au><au>Sbayti, Manel</au><au>Belhadjsalah, Hedi</au><au>Szpunar, Marcin</au><au>Lemu, Hirpa G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications</atitle><jtitle>Journal of composites science</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>5</volume><issue>8</issue><spage>217</spage><pages>217-</pages><issn>2504-477X</issn><eissn>2504-477X</eissn><abstract>Fibre metal laminates, hybrid composite materials built up from interlaced layers of thin metals and fibre reinforced adhesives, are future-proof materials used in the production of passenger aircraft, yachts, sailplanes, racing cars, and sports equipment. The most commercially available fibre–metal laminates are carbon reinforced aluminium laminates, aramid reinforced aluminium laminates, and glass reinforced aluminium laminates. This review emphasises the developing technologies for forming hybrid metal–polymer composites (HMPC). New advances and future possibilities in the forming technology for this group of materials is discussed. A brief classification of the currently available types of FMLs and details of their methods of fabrication are also presented. Particular emphasis was placed on the methods of shaping FMLs using plastic working techniques, i.e., incremental sheet forming, shot peening forming, press brake bending, electro-magnetic forming, hydroforming, and stamping. Current progress and the future directions of research on HMPCs are summarised and presented.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jcs5080217</doi><orcidid>https://orcid.org/0000-0003-3412-0716</orcidid><orcidid>https://orcid.org/0000-0001-9588-4707</orcidid><orcidid>https://orcid.org/0000-0002-4366-0135</orcidid><orcidid>https://orcid.org/0000-0003-1580-5357</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-477X
ispartof Journal of composites science, 2021-08, Vol.5 (8), p.217
issn 2504-477X
2504-477X
language eng
recordid cdi_proquest_journals_2565290715
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aircraft industry
Aluminum
Aviation
Brake forming
Brake presses
Carbon
Composite materials
Epoxy resins
Fiber composites
Fiber-metal laminates
Forming techniques
Gliders
Hybrid composites
Hydroforming
Laboratories
Laminates
Magnetic forming
Metals
Methods
Nanoparticles
Passenger aircraft
Polymer matrix composites
Polymers
Race cars
Sporting goods
Thin films
Titanium
Unmanned aerial vehicles
Weight reduction
title New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Advances%20and%20Future%20Possibilities%20in%20Forming%20Technology%20of%20Hybrid%20Metal%E2%80%93Polymer%20Composites%20Used%20in%20Aerospace%20Applications&rft.jtitle=Journal%20of%20composites%20science&rft.au=Trzepieci%C5%84ski,%20Tomasz&rft.date=2021-08-01&rft.volume=5&rft.issue=8&rft.spage=217&rft.pages=217-&rft.issn=2504-477X&rft.eissn=2504-477X&rft_id=info:doi/10.3390/jcs5080217&rft_dat=%3Cproquest_cross%3E2565290715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565290715&rft_id=info:pmid/&rfr_iscdi=true