Avalanche Photodiodes With Dual Multiplication Layers and Ultra-High Responsivity-Bandwidth Products for FMCW Lidar System Applications
In this work, we demonstrate a novel In 0.52 Al 0.48 As based top-illuminated avalanche photodiode (APD), designed to circumvent the problem of serious bandwidth degradation under high gain (>100) and high power operation and significantly enhance the dynamic range in the established frequency mo...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2022-03, Vol.28 (2: Optical Detectors), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 2: Optical Detectors |
container_start_page | 1 |
container_title | IEEE journal of selected topics in quantum electronics |
container_volume | 28 |
creator | Ahmad, Zohauddin Kuo, Sheng-I Chang, You-Chia Chao, Rui-Lin Naseem, None Lee, Yi-Shan Hung, Yung-Jr Chen, Huang-Ming Chen, Jason Goh, Chee Seong Shi, Jin-Wei |
description | In this work, we demonstrate a novel In 0.52 Al 0.48 As based top-illuminated avalanche photodiode (APD), designed to circumvent the problem of serious bandwidth degradation under high gain (>100) and high power operation and significantly enhance the dynamic range in the established frequency modulated continuous wave (FMCW) lidar system. In our APD design, the carriers transiting through the dual multiplication (M-)layers are subjected to a stepped-up electric field profile, so they can be energized by the first step and propagate to the second step to trigger the avalanche processes. Such a cascade avalanche process leads to an ultra-high gain bandwidth product (460 GHz) with a 1 A/W responsivity at unit gain. Compared to the high-performance and commercial p-i-n PD and photo-receiver (PD + trans-impedance amplifier (TIA)) installed in the same lidar test bed, our demonstrated APD receiver (without TIA) has a larger S/N ratio under high operation gain (33 A/W) with less optical local-oscillator (LO) power required (0.25 vs. 0.5 mW), while exhibiting a wider dynamic range in each pixel. These advantages in turn lead to the construction of a better quality of 3-D lidar image by using the demonstrated APD. |
doi_str_mv | 10.1109/JSTQE.2021.3062637 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2565239309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9368988</ieee_id><sourcerecordid>2565239309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d6bf415c282644b1b4132042af25b1c2f77afabb2f393eaa6d0358deebf174093</originalsourceid><addsrcrecordid>eNo9kMlOwzAURSMEEmX4AdhYYp3iMcOylJaCghhaBLvIiW3iKsTBdkD5An6b0Fas3pPePfdJJwjOEBwjBNPLu-XqaTbGEKMxgRGOSLwXjBBjSUgZxfvDDuM4xBF8OwyOnFtDCBOawFHwM_niNW_KSoLHyngjtBHSgVftK3Dd8Rrcd7XXba1L7rVpQMZ7aR3gjQAvtbc8XOj3CjxL15rG6S_t-_BqOH5rMRQ8WiO60jugjAXz--kryLTgFix75-UHmLT_ve4kOFC8dvJ0N4-Dl_lsNV2E2cPN7XSShSVOmQ9FVCiKWIkTHFFaoIIigiHFXGFWoBKrOOaKFwVWJCWS80hAwhIhZaFQTGFKjoOLbW9rzWcnnc_XprPN8DLHLGJ4wDYpvE2V1jhnpcpbqz-47XME8z_h-UZ4_ic83wkfoPMtpKWU_0BKoiRNEvILrOl-8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565239309</pqid></control><display><type>article</type><title>Avalanche Photodiodes With Dual Multiplication Layers and Ultra-High Responsivity-Bandwidth Products for FMCW Lidar System Applications</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Ahmad, Zohauddin ; Kuo, Sheng-I ; Chang, You-Chia ; Chao, Rui-Lin ; Naseem, None ; Lee, Yi-Shan ; Hung, Yung-Jr ; Chen, Huang-Ming ; Chen, Jason ; Goh, Chee Seong ; Shi, Jin-Wei</creator><creatorcontrib>Ahmad, Zohauddin ; Kuo, Sheng-I ; Chang, You-Chia ; Chao, Rui-Lin ; Naseem, None ; Lee, Yi-Shan ; Hung, Yung-Jr ; Chen, Huang-Ming ; Chen, Jason ; Goh, Chee Seong ; Shi, Jin-Wei</creatorcontrib><description>In this work, we demonstrate a novel In 0.52 Al 0.48 As based top-illuminated avalanche photodiode (APD), designed to circumvent the problem of serious bandwidth degradation under high gain (>100) and high power operation and significantly enhance the dynamic range in the established frequency modulated continuous wave (FMCW) lidar system. In our APD design, the carriers transiting through the dual multiplication (M-)layers are subjected to a stepped-up electric field profile, so they can be energized by the first step and propagate to the second step to trigger the avalanche processes. Such a cascade avalanche process leads to an ultra-high gain bandwidth product (460 GHz) with a 1 A/W responsivity at unit gain. Compared to the high-performance and commercial p-i-n PD and photo-receiver (PD + trans-impedance amplifier (TIA)) installed in the same lidar test bed, our demonstrated APD receiver (without TIA) has a larger S/N ratio under high operation gain (33 A/W) with less optical local-oscillator (LO) power required (0.25 vs. 0.5 mW), while exhibiting a wider dynamic range in each pixel. These advantages in turn lead to the construction of a better quality of 3-D lidar image by using the demonstrated APD.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2021.3062637</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Avalanche diodes ; Avalanche photodiode ; Avalanche photodiodes ; Bandwidth ; Bandwidths ; Continuous radiation ; Dynamic range ; Electric fields ; High gain ; Image quality ; Laser radar ; Lidar ; Multiplication ; Optical imaging ; Optical pumping ; Optical receivers ; Optical reflection ; p-i-n photodiode ; Photodiodes ; Signal to noise ratio</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2022-03, Vol.28 (2: Optical Detectors), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d6bf415c282644b1b4132042af25b1c2f77afabb2f393eaa6d0358deebf174093</citedby><cites>FETCH-LOGICAL-c295t-d6bf415c282644b1b4132042af25b1c2f77afabb2f393eaa6d0358deebf174093</cites><orcidid>0000-0002-2132-2135 ; 0000-0002-0512-9503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9368988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9368988$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmad, Zohauddin</creatorcontrib><creatorcontrib>Kuo, Sheng-I</creatorcontrib><creatorcontrib>Chang, You-Chia</creatorcontrib><creatorcontrib>Chao, Rui-Lin</creatorcontrib><creatorcontrib>Naseem, None</creatorcontrib><creatorcontrib>Lee, Yi-Shan</creatorcontrib><creatorcontrib>Hung, Yung-Jr</creatorcontrib><creatorcontrib>Chen, Huang-Ming</creatorcontrib><creatorcontrib>Chen, Jason</creatorcontrib><creatorcontrib>Goh, Chee Seong</creatorcontrib><creatorcontrib>Shi, Jin-Wei</creatorcontrib><title>Avalanche Photodiodes With Dual Multiplication Layers and Ultra-High Responsivity-Bandwidth Products for FMCW Lidar System Applications</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>In this work, we demonstrate a novel In 0.52 Al 0.48 As based top-illuminated avalanche photodiode (APD), designed to circumvent the problem of serious bandwidth degradation under high gain (>100) and high power operation and significantly enhance the dynamic range in the established frequency modulated continuous wave (FMCW) lidar system. In our APD design, the carriers transiting through the dual multiplication (M-)layers are subjected to a stepped-up electric field profile, so they can be energized by the first step and propagate to the second step to trigger the avalanche processes. Such a cascade avalanche process leads to an ultra-high gain bandwidth product (460 GHz) with a 1 A/W responsivity at unit gain. Compared to the high-performance and commercial p-i-n PD and photo-receiver (PD + trans-impedance amplifier (TIA)) installed in the same lidar test bed, our demonstrated APD receiver (without TIA) has a larger S/N ratio under high operation gain (33 A/W) with less optical local-oscillator (LO) power required (0.25 vs. 0.5 mW), while exhibiting a wider dynamic range in each pixel. These advantages in turn lead to the construction of a better quality of 3-D lidar image by using the demonstrated APD.</description><subject>Avalanche diodes</subject><subject>Avalanche photodiode</subject><subject>Avalanche photodiodes</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Continuous radiation</subject><subject>Dynamic range</subject><subject>Electric fields</subject><subject>High gain</subject><subject>Image quality</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Multiplication</subject><subject>Optical imaging</subject><subject>Optical pumping</subject><subject>Optical receivers</subject><subject>Optical reflection</subject><subject>p-i-n photodiode</subject><subject>Photodiodes</subject><subject>Signal to noise ratio</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMlOwzAURSMEEmX4AdhYYp3iMcOylJaCghhaBLvIiW3iKsTBdkD5An6b0Fas3pPePfdJJwjOEBwjBNPLu-XqaTbGEKMxgRGOSLwXjBBjSUgZxfvDDuM4xBF8OwyOnFtDCBOawFHwM_niNW_KSoLHyngjtBHSgVftK3Dd8Rrcd7XXba1L7rVpQMZ7aR3gjQAvtbc8XOj3CjxL15rG6S_t-_BqOH5rMRQ8WiO60jugjAXz--kryLTgFix75-UHmLT_ve4kOFC8dvJ0N4-Dl_lsNV2E2cPN7XSShSVOmQ9FVCiKWIkTHFFaoIIigiHFXGFWoBKrOOaKFwVWJCWS80hAwhIhZaFQTGFKjoOLbW9rzWcnnc_XprPN8DLHLGJ4wDYpvE2V1jhnpcpbqz-47XME8z_h-UZ4_ic83wkfoPMtpKWU_0BKoiRNEvILrOl-8w</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Ahmad, Zohauddin</creator><creator>Kuo, Sheng-I</creator><creator>Chang, You-Chia</creator><creator>Chao, Rui-Lin</creator><creator>Naseem, None</creator><creator>Lee, Yi-Shan</creator><creator>Hung, Yung-Jr</creator><creator>Chen, Huang-Ming</creator><creator>Chen, Jason</creator><creator>Goh, Chee Seong</creator><creator>Shi, Jin-Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2132-2135</orcidid><orcidid>https://orcid.org/0000-0002-0512-9503</orcidid></search><sort><creationdate>20220301</creationdate><title>Avalanche Photodiodes With Dual Multiplication Layers and Ultra-High Responsivity-Bandwidth Products for FMCW Lidar System Applications</title><author>Ahmad, Zohauddin ; Kuo, Sheng-I ; Chang, You-Chia ; Chao, Rui-Lin ; Naseem, None ; Lee, Yi-Shan ; Hung, Yung-Jr ; Chen, Huang-Ming ; Chen, Jason ; Goh, Chee Seong ; Shi, Jin-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d6bf415c282644b1b4132042af25b1c2f77afabb2f393eaa6d0358deebf174093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Avalanche diodes</topic><topic>Avalanche photodiode</topic><topic>Avalanche photodiodes</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Continuous radiation</topic><topic>Dynamic range</topic><topic>Electric fields</topic><topic>High gain</topic><topic>Image quality</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Multiplication</topic><topic>Optical imaging</topic><topic>Optical pumping</topic><topic>Optical receivers</topic><topic>Optical reflection</topic><topic>p-i-n photodiode</topic><topic>Photodiodes</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Zohauddin</creatorcontrib><creatorcontrib>Kuo, Sheng-I</creatorcontrib><creatorcontrib>Chang, You-Chia</creatorcontrib><creatorcontrib>Chao, Rui-Lin</creatorcontrib><creatorcontrib>Naseem, None</creatorcontrib><creatorcontrib>Lee, Yi-Shan</creatorcontrib><creatorcontrib>Hung, Yung-Jr</creatorcontrib><creatorcontrib>Chen, Huang-Ming</creatorcontrib><creatorcontrib>Chen, Jason</creatorcontrib><creatorcontrib>Goh, Chee Seong</creatorcontrib><creatorcontrib>Shi, Jin-Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmad, Zohauddin</au><au>Kuo, Sheng-I</au><au>Chang, You-Chia</au><au>Chao, Rui-Lin</au><au>Naseem, None</au><au>Lee, Yi-Shan</au><au>Hung, Yung-Jr</au><au>Chen, Huang-Ming</au><au>Chen, Jason</au><au>Goh, Chee Seong</au><au>Shi, Jin-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Avalanche Photodiodes With Dual Multiplication Layers and Ultra-High Responsivity-Bandwidth Products for FMCW Lidar System Applications</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>28</volume><issue>2: Optical Detectors</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>In this work, we demonstrate a novel In 0.52 Al 0.48 As based top-illuminated avalanche photodiode (APD), designed to circumvent the problem of serious bandwidth degradation under high gain (>100) and high power operation and significantly enhance the dynamic range in the established frequency modulated continuous wave (FMCW) lidar system. In our APD design, the carriers transiting through the dual multiplication (M-)layers are subjected to a stepped-up electric field profile, so they can be energized by the first step and propagate to the second step to trigger the avalanche processes. Such a cascade avalanche process leads to an ultra-high gain bandwidth product (460 GHz) with a 1 A/W responsivity at unit gain. Compared to the high-performance and commercial p-i-n PD and photo-receiver (PD + trans-impedance amplifier (TIA)) installed in the same lidar test bed, our demonstrated APD receiver (without TIA) has a larger S/N ratio under high operation gain (33 A/W) with less optical local-oscillator (LO) power required (0.25 vs. 0.5 mW), while exhibiting a wider dynamic range in each pixel. These advantages in turn lead to the construction of a better quality of 3-D lidar image by using the demonstrated APD.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2021.3062637</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2132-2135</orcidid><orcidid>https://orcid.org/0000-0002-0512-9503</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-260X |
ispartof | IEEE journal of selected topics in quantum electronics, 2022-03, Vol.28 (2: Optical Detectors), p.1-9 |
issn | 1077-260X 1558-4542 |
language | eng |
recordid | cdi_proquest_journals_2565239309 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Avalanche diodes Avalanche photodiode Avalanche photodiodes Bandwidth Bandwidths Continuous radiation Dynamic range Electric fields High gain Image quality Laser radar Lidar Multiplication Optical imaging Optical pumping Optical receivers Optical reflection p-i-n photodiode Photodiodes Signal to noise ratio |
title | Avalanche Photodiodes With Dual Multiplication Layers and Ultra-High Responsivity-Bandwidth Products for FMCW Lidar System Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Avalanche%20Photodiodes%20With%20Dual%20Multiplication%20Layers%20and%20Ultra-High%20Responsivity-Bandwidth%20Products%20for%20FMCW%20Lidar%20System%20Applications&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Ahmad,%20Zohauddin&rft.date=2022-03-01&rft.volume=28&rft.issue=2:%20Optical%20Detectors&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2021.3062637&rft_dat=%3Cproquest_RIE%3E2565239309%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565239309&rft_id=info:pmid/&rft_ieee_id=9368988&rfr_iscdi=true |