Proximal Regularization for the Saddle Point Gradient Dynamics

This article concerns the solution of a convex optimization problem through the saddle point gradient dynamics. Instead of using the standard Lagrangian as is classical in this method, we consider a regularized Lagrangian obtained through a proximal minimization step. We show that, without assumptio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2021-09, Vol.66 (9), p.4385-4392
Hauptverfasser: Goldsztajn, Diego, Paganini, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4392
container_issue 9
container_start_page 4385
container_title IEEE transactions on automatic control
container_volume 66
creator Goldsztajn, Diego
Paganini, Fernando
description This article concerns the solution of a convex optimization problem through the saddle point gradient dynamics. Instead of using the standard Lagrangian as is classical in this method, we consider a regularized Lagrangian obtained through a proximal minimization step. We show that, without assumptions of smoothness or strict convexity in the original problem, the regularized Lagrangian is smooth and leads to globally convergent saddle point dynamics. The method is demonstrated through an application to resource allocation in cloud computing.
doi_str_mv 10.1109/TAC.2020.3045124
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2565239120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9296263</ieee_id><sourcerecordid>2565239120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d834e845b8874954eef8830cc600616e91c79c2a3dabb1471152f9f6e8372be83</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeA59Sd_cruRShVq1CwaD0vm2SiKWlSdxOw_vVuafEyH_DeDO9HyDXQCQA1d6vpbMIooxNOhQQmTsgIpNQpk4yfkhGloFPDtDonFyGs46qEgBG5X_rup964JnnDz6Fxvv51fd21SdX5pP_C5N2VZYPJsqvbPpl7V9YYh4dd6zZ1ES7JWeWagFfHPiYfT4-r2XO6eJ2_zKaLtGAG-rTUXKAWMtc6E0YKxEprTotCUapAoYEiMwVzvHR5DiIDkKwylULNM5bHOia3h7tb330PGHq77gbfxpeWSRUjGmA0quhBVfguBI-V3fqYze8sULunZCMlu6dkj5Si5eZgqRHxX26YUUxx_gdOSWFz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565239120</pqid></control><display><type>article</type><title>Proximal Regularization for the Saddle Point Gradient Dynamics</title><source>IEEE Electronic Library (IEL)</source><creator>Goldsztajn, Diego ; Paganini, Fernando</creator><creatorcontrib>Goldsztajn, Diego ; Paganini, Fernando</creatorcontrib><description>This article concerns the solution of a convex optimization problem through the saddle point gradient dynamics. Instead of using the standard Lagrangian as is classical in this method, we consider a regularized Lagrangian obtained through a proximal minimization step. We show that, without assumptions of smoothness or strict convexity in the original problem, the regularized Lagrangian is smooth and leads to globally convergent saddle point dynamics. The method is demonstrated through an application to resource allocation in cloud computing.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2020.3045124</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic stability ; Cloud computing ; Computational geometry ; Control theory ; Convergence ; Convex functions ; Convex optimization ; Convexity ; Optimization ; proximal method ; Regularization ; Resource allocation ; Resource management ; saddle point dynamics ; Saddle points ; Smoothness ; Trajectory</subject><ispartof>IEEE transactions on automatic control, 2021-09, Vol.66 (9), p.4385-4392</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d834e845b8874954eef8830cc600616e91c79c2a3dabb1471152f9f6e8372be83</citedby><cites>FETCH-LOGICAL-c291t-d834e845b8874954eef8830cc600616e91c79c2a3dabb1471152f9f6e8372be83</cites><orcidid>0000-0001-7212-0309 ; 0000-0002-1258-9049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9296263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9296263$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goldsztajn, Diego</creatorcontrib><creatorcontrib>Paganini, Fernando</creatorcontrib><title>Proximal Regularization for the Saddle Point Gradient Dynamics</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This article concerns the solution of a convex optimization problem through the saddle point gradient dynamics. Instead of using the standard Lagrangian as is classical in this method, we consider a regularized Lagrangian obtained through a proximal minimization step. We show that, without assumptions of smoothness or strict convexity in the original problem, the regularized Lagrangian is smooth and leads to globally convergent saddle point dynamics. The method is demonstrated through an application to resource allocation in cloud computing.</description><subject>Asymptotic stability</subject><subject>Cloud computing</subject><subject>Computational geometry</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Convex functions</subject><subject>Convex optimization</subject><subject>Convexity</subject><subject>Optimization</subject><subject>proximal method</subject><subject>Regularization</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>saddle point dynamics</subject><subject>Saddle points</subject><subject>Smoothness</subject><subject>Trajectory</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpeA59Sd_cruRShVq1CwaD0vm2SiKWlSdxOw_vVuafEyH_DeDO9HyDXQCQA1d6vpbMIooxNOhQQmTsgIpNQpk4yfkhGloFPDtDonFyGs46qEgBG5X_rup964JnnDz6Fxvv51fd21SdX5pP_C5N2VZYPJsqvbPpl7V9YYh4dd6zZ1ES7JWeWagFfHPiYfT4-r2XO6eJ2_zKaLtGAG-rTUXKAWMtc6E0YKxEprTotCUapAoYEiMwVzvHR5DiIDkKwylULNM5bHOia3h7tb330PGHq77gbfxpeWSRUjGmA0quhBVfguBI-V3fqYze8sULunZCMlu6dkj5Si5eZgqRHxX26YUUxx_gdOSWFz</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Goldsztajn, Diego</creator><creator>Paganini, Fernando</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7212-0309</orcidid><orcidid>https://orcid.org/0000-0002-1258-9049</orcidid></search><sort><creationdate>20210901</creationdate><title>Proximal Regularization for the Saddle Point Gradient Dynamics</title><author>Goldsztajn, Diego ; Paganini, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d834e845b8874954eef8830cc600616e91c79c2a3dabb1471152f9f6e8372be83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic stability</topic><topic>Cloud computing</topic><topic>Computational geometry</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Convex functions</topic><topic>Convex optimization</topic><topic>Convexity</topic><topic>Optimization</topic><topic>proximal method</topic><topic>Regularization</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>saddle point dynamics</topic><topic>Saddle points</topic><topic>Smoothness</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldsztajn, Diego</creatorcontrib><creatorcontrib>Paganini, Fernando</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goldsztajn, Diego</au><au>Paganini, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proximal Regularization for the Saddle Point Gradient Dynamics</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>66</volume><issue>9</issue><spage>4385</spage><epage>4392</epage><pages>4385-4392</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This article concerns the solution of a convex optimization problem through the saddle point gradient dynamics. Instead of using the standard Lagrangian as is classical in this method, we consider a regularized Lagrangian obtained through a proximal minimization step. We show that, without assumptions of smoothness or strict convexity in the original problem, the regularized Lagrangian is smooth and leads to globally convergent saddle point dynamics. The method is demonstrated through an application to resource allocation in cloud computing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2020.3045124</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7212-0309</orcidid><orcidid>https://orcid.org/0000-0002-1258-9049</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2021-09, Vol.66 (9), p.4385-4392
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_2565239120
source IEEE Electronic Library (IEL)
subjects Asymptotic stability
Cloud computing
Computational geometry
Control theory
Convergence
Convex functions
Convex optimization
Convexity
Optimization
proximal method
Regularization
Resource allocation
Resource management
saddle point dynamics
Saddle points
Smoothness
Trajectory
title Proximal Regularization for the Saddle Point Gradient Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proximal%20Regularization%20for%20the%20Saddle%20Point%20Gradient%20Dynamics&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Goldsztajn,%20Diego&rft.date=2021-09-01&rft.volume=66&rft.issue=9&rft.spage=4385&rft.epage=4392&rft.pages=4385-4392&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2020.3045124&rft_dat=%3Cproquest_RIE%3E2565239120%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565239120&rft_id=info:pmid/&rft_ieee_id=9296263&rfr_iscdi=true