Proximal Regularization for the Saddle Point Gradient Dynamics
This article concerns the solution of a convex optimization problem through the saddle point gradient dynamics. Instead of using the standard Lagrangian as is classical in this method, we consider a regularized Lagrangian obtained through a proximal minimization step. We show that, without assumptio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2021-09, Vol.66 (9), p.4385-4392 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4392 |
---|---|
container_issue | 9 |
container_start_page | 4385 |
container_title | IEEE transactions on automatic control |
container_volume | 66 |
creator | Goldsztajn, Diego Paganini, Fernando |
description | This article concerns the solution of a convex optimization problem through the saddle point gradient dynamics. Instead of using the standard Lagrangian as is classical in this method, we consider a regularized Lagrangian obtained through a proximal minimization step. We show that, without assumptions of smoothness or strict convexity in the original problem, the regularized Lagrangian is smooth and leads to globally convergent saddle point dynamics. The method is demonstrated through an application to resource allocation in cloud computing. |
doi_str_mv | 10.1109/TAC.2020.3045124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2565239120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9296263</ieee_id><sourcerecordid>2565239120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d834e845b8874954eef8830cc600616e91c79c2a3dabb1471152f9f6e8372be83</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeA59Sd_cruRShVq1CwaD0vm2SiKWlSdxOw_vVuafEyH_DeDO9HyDXQCQA1d6vpbMIooxNOhQQmTsgIpNQpk4yfkhGloFPDtDonFyGs46qEgBG5X_rup964JnnDz6Fxvv51fd21SdX5pP_C5N2VZYPJsqvbPpl7V9YYh4dd6zZ1ES7JWeWagFfHPiYfT4-r2XO6eJ2_zKaLtGAG-rTUXKAWMtc6E0YKxEprTotCUapAoYEiMwVzvHR5DiIDkKwylULNM5bHOia3h7tb330PGHq77gbfxpeWSRUjGmA0quhBVfguBI-V3fqYze8sULunZCMlu6dkj5Si5eZgqRHxX26YUUxx_gdOSWFz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565239120</pqid></control><display><type>article</type><title>Proximal Regularization for the Saddle Point Gradient Dynamics</title><source>IEEE Electronic Library (IEL)</source><creator>Goldsztajn, Diego ; Paganini, Fernando</creator><creatorcontrib>Goldsztajn, Diego ; Paganini, Fernando</creatorcontrib><description>This article concerns the solution of a convex optimization problem through the saddle point gradient dynamics. Instead of using the standard Lagrangian as is classical in this method, we consider a regularized Lagrangian obtained through a proximal minimization step. We show that, without assumptions of smoothness or strict convexity in the original problem, the regularized Lagrangian is smooth and leads to globally convergent saddle point dynamics. The method is demonstrated through an application to resource allocation in cloud computing.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2020.3045124</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic stability ; Cloud computing ; Computational geometry ; Control theory ; Convergence ; Convex functions ; Convex optimization ; Convexity ; Optimization ; proximal method ; Regularization ; Resource allocation ; Resource management ; saddle point dynamics ; Saddle points ; Smoothness ; Trajectory</subject><ispartof>IEEE transactions on automatic control, 2021-09, Vol.66 (9), p.4385-4392</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d834e845b8874954eef8830cc600616e91c79c2a3dabb1471152f9f6e8372be83</citedby><cites>FETCH-LOGICAL-c291t-d834e845b8874954eef8830cc600616e91c79c2a3dabb1471152f9f6e8372be83</cites><orcidid>0000-0001-7212-0309 ; 0000-0002-1258-9049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9296263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9296263$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goldsztajn, Diego</creatorcontrib><creatorcontrib>Paganini, Fernando</creatorcontrib><title>Proximal Regularization for the Saddle Point Gradient Dynamics</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This article concerns the solution of a convex optimization problem through the saddle point gradient dynamics. Instead of using the standard Lagrangian as is classical in this method, we consider a regularized Lagrangian obtained through a proximal minimization step. We show that, without assumptions of smoothness or strict convexity in the original problem, the regularized Lagrangian is smooth and leads to globally convergent saddle point dynamics. The method is demonstrated through an application to resource allocation in cloud computing.</description><subject>Asymptotic stability</subject><subject>Cloud computing</subject><subject>Computational geometry</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Convex functions</subject><subject>Convex optimization</subject><subject>Convexity</subject><subject>Optimization</subject><subject>proximal method</subject><subject>Regularization</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>saddle point dynamics</subject><subject>Saddle points</subject><subject>Smoothness</subject><subject>Trajectory</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpeA59Sd_cruRShVq1CwaD0vm2SiKWlSdxOw_vVuafEyH_DeDO9HyDXQCQA1d6vpbMIooxNOhQQmTsgIpNQpk4yfkhGloFPDtDonFyGs46qEgBG5X_rup964JnnDz6Fxvv51fd21SdX5pP_C5N2VZYPJsqvbPpl7V9YYh4dd6zZ1ES7JWeWagFfHPiYfT4-r2XO6eJ2_zKaLtGAG-rTUXKAWMtc6E0YKxEprTotCUapAoYEiMwVzvHR5DiIDkKwylULNM5bHOia3h7tb330PGHq77gbfxpeWSRUjGmA0quhBVfguBI-V3fqYze8sULunZCMlu6dkj5Si5eZgqRHxX26YUUxx_gdOSWFz</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Goldsztajn, Diego</creator><creator>Paganini, Fernando</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7212-0309</orcidid><orcidid>https://orcid.org/0000-0002-1258-9049</orcidid></search><sort><creationdate>20210901</creationdate><title>Proximal Regularization for the Saddle Point Gradient Dynamics</title><author>Goldsztajn, Diego ; Paganini, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d834e845b8874954eef8830cc600616e91c79c2a3dabb1471152f9f6e8372be83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic stability</topic><topic>Cloud computing</topic><topic>Computational geometry</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Convex functions</topic><topic>Convex optimization</topic><topic>Convexity</topic><topic>Optimization</topic><topic>proximal method</topic><topic>Regularization</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>saddle point dynamics</topic><topic>Saddle points</topic><topic>Smoothness</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldsztajn, Diego</creatorcontrib><creatorcontrib>Paganini, Fernando</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goldsztajn, Diego</au><au>Paganini, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proximal Regularization for the Saddle Point Gradient Dynamics</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>66</volume><issue>9</issue><spage>4385</spage><epage>4392</epage><pages>4385-4392</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This article concerns the solution of a convex optimization problem through the saddle point gradient dynamics. Instead of using the standard Lagrangian as is classical in this method, we consider a regularized Lagrangian obtained through a proximal minimization step. We show that, without assumptions of smoothness or strict convexity in the original problem, the regularized Lagrangian is smooth and leads to globally convergent saddle point dynamics. The method is demonstrated through an application to resource allocation in cloud computing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2020.3045124</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7212-0309</orcidid><orcidid>https://orcid.org/0000-0002-1258-9049</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2021-09, Vol.66 (9), p.4385-4392 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_2565239120 |
source | IEEE Electronic Library (IEL) |
subjects | Asymptotic stability Cloud computing Computational geometry Control theory Convergence Convex functions Convex optimization Convexity Optimization proximal method Regularization Resource allocation Resource management saddle point dynamics Saddle points Smoothness Trajectory |
title | Proximal Regularization for the Saddle Point Gradient Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proximal%20Regularization%20for%20the%20Saddle%20Point%20Gradient%20Dynamics&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Goldsztajn,%20Diego&rft.date=2021-09-01&rft.volume=66&rft.issue=9&rft.spage=4385&rft.epage=4392&rft.pages=4385-4392&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2020.3045124&rft_dat=%3Cproquest_RIE%3E2565239120%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565239120&rft_id=info:pmid/&rft_ieee_id=9296263&rfr_iscdi=true |