Adversarial Risk via Optimal Transport and Optimal Couplings
Modern machine learning algorithms perform poorly on adversarially manipulated data. Adversarial risk quantifies the error of classifiers in adversarial settings; adversarial classifiers minimize adversarial risk. In this paper, we analyze adversarial risk and adversarial classifiers from an optimal...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2021-09, Vol.67 (9), p.6031-6052 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6052 |
---|---|
container_issue | 9 |
container_start_page | 6031 |
container_title | IEEE transactions on information theory |
container_volume | 67 |
creator | Pydi, Muni Sreenivas Jog, Varun |
description | Modern machine learning algorithms perform poorly on adversarially manipulated data. Adversarial risk quantifies the error of classifiers in adversarial settings; adversarial classifiers minimize adversarial risk. In this paper, we analyze adversarial risk and adversarial classifiers from an optimal transport perspective. We show that the optimal adversarial risk for binary classification with 0-1 loss is determined by an optimal transport cost between the probability distributions of the two classes. We develop optimal transport plans (probabilistic couplings) for univariate distributions such as the normal, the uniform, and the triangular distribution. We also derive optimal adversarial classifiers in these settings. Our analysis leads to algorithm-independent fundamental limits on adversarial risk, which we calculate for several real-world datasets. We extend our results to general loss functions under convexity and smoothness assumptions. |
doi_str_mv | 10.1109/TIT.2021.3100107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2565237692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9496634</ieee_id><sourcerecordid>2565237692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-ae27d2221559ff81ef7991f380ac993f32703a7cb81742e59a8c0669f2a9b3063</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeA58Td2a8MeCnFj0KhIPG8bNNdSY1J3E0L_vduaelpmMd7M48fIfeMFoxRfKoWVQEUWMEZpYzqCzJhUuoclRSXZJK0MkchymtyE-M2rUIymJDn2WbvQrShsW320cTvbN_YbDWMzU8SqmC7OPRhzGy3Oavzfje0TfcVb8mVt210d6c5JZ-vL9X8PV-u3hbz2TKvOedjbh3oDQCkPuh9yZzXiMzzktoakXsOmnKr63XJtAAn0ZY1VQo9WFxzqviUPB7vDqH_3bk4mm2_C116aUAqCVwrhOSiR1cd-hiD82YIqW_4M4yaAyOTGJkDI3NilCIPx0jjnDvbUaBSXPB_bfNgvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565237692</pqid></control><display><type>article</type><title>Adversarial Risk via Optimal Transport and Optimal Couplings</title><source>IEEE Electronic Library (IEL)</source><creator>Pydi, Muni Sreenivas ; Jog, Varun</creator><creatorcontrib>Pydi, Muni Sreenivas ; Jog, Varun</creatorcontrib><description>Modern machine learning algorithms perform poorly on adversarially manipulated data. Adversarial risk quantifies the error of classifiers in adversarial settings; adversarial classifiers minimize adversarial risk. In this paper, we analyze adversarial risk and adversarial classifiers from an optimal transport perspective. We show that the optimal adversarial risk for binary classification with 0-1 loss is determined by an optimal transport cost between the probability distributions of the two classes. We develop optimal transport plans (probabilistic couplings) for univariate distributions such as the normal, the uniform, and the triangular distribution. We also derive optimal adversarial classifiers in these settings. Our analysis leads to algorithm-independent fundamental limits on adversarial risk, which we calculate for several real-world datasets. We extend our results to general loss functions under convexity and smoothness assumptions.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2021.3100107</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Classifiers ; Convexity ; Couplings ; information theory ; Kernel ; Loss measurement ; Machine learning ; Measurement ; Perturbation methods ; Q measurement ; Risk analysis ; robustness ; Smoothness ; Statistical analysis ; statistical learning ; Transportation planning</subject><ispartof>IEEE transactions on information theory, 2021-09, Vol.67 (9), p.6031-6052</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-ae27d2221559ff81ef7991f380ac993f32703a7cb81742e59a8c0669f2a9b3063</citedby><cites>FETCH-LOGICAL-c333t-ae27d2221559ff81ef7991f380ac993f32703a7cb81742e59a8c0669f2a9b3063</cites><orcidid>0000-0003-0311-150X ; 0000-0003-4159-0900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9496634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9496634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pydi, Muni Sreenivas</creatorcontrib><creatorcontrib>Jog, Varun</creatorcontrib><title>Adversarial Risk via Optimal Transport and Optimal Couplings</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Modern machine learning algorithms perform poorly on adversarially manipulated data. Adversarial risk quantifies the error of classifiers in adversarial settings; adversarial classifiers minimize adversarial risk. In this paper, we analyze adversarial risk and adversarial classifiers from an optimal transport perspective. We show that the optimal adversarial risk for binary classification with 0-1 loss is determined by an optimal transport cost between the probability distributions of the two classes. We develop optimal transport plans (probabilistic couplings) for univariate distributions such as the normal, the uniform, and the triangular distribution. We also derive optimal adversarial classifiers in these settings. Our analysis leads to algorithm-independent fundamental limits on adversarial risk, which we calculate for several real-world datasets. We extend our results to general loss functions under convexity and smoothness assumptions.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Convexity</subject><subject>Couplings</subject><subject>information theory</subject><subject>Kernel</subject><subject>Loss measurement</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Perturbation methods</subject><subject>Q measurement</subject><subject>Risk analysis</subject><subject>robustness</subject><subject>Smoothness</subject><subject>Statistical analysis</subject><subject>statistical learning</subject><subject>Transportation planning</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpeA58Td2a8MeCnFj0KhIPG8bNNdSY1J3E0L_vduaelpmMd7M48fIfeMFoxRfKoWVQEUWMEZpYzqCzJhUuoclRSXZJK0MkchymtyE-M2rUIymJDn2WbvQrShsW320cTvbN_YbDWMzU8SqmC7OPRhzGy3Oavzfje0TfcVb8mVt210d6c5JZ-vL9X8PV-u3hbz2TKvOedjbh3oDQCkPuh9yZzXiMzzktoakXsOmnKr63XJtAAn0ZY1VQo9WFxzqviUPB7vDqH_3bk4mm2_C116aUAqCVwrhOSiR1cd-hiD82YIqW_4M4yaAyOTGJkDI3NilCIPx0jjnDvbUaBSXPB_bfNgvA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Pydi, Muni Sreenivas</creator><creator>Jog, Varun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0311-150X</orcidid><orcidid>https://orcid.org/0000-0003-4159-0900</orcidid></search><sort><creationdate>20210901</creationdate><title>Adversarial Risk via Optimal Transport and Optimal Couplings</title><author>Pydi, Muni Sreenivas ; Jog, Varun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-ae27d2221559ff81ef7991f380ac993f32703a7cb81742e59a8c0669f2a9b3063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Convexity</topic><topic>Couplings</topic><topic>information theory</topic><topic>Kernel</topic><topic>Loss measurement</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Perturbation methods</topic><topic>Q measurement</topic><topic>Risk analysis</topic><topic>robustness</topic><topic>Smoothness</topic><topic>Statistical analysis</topic><topic>statistical learning</topic><topic>Transportation planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pydi, Muni Sreenivas</creatorcontrib><creatorcontrib>Jog, Varun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pydi, Muni Sreenivas</au><au>Jog, Varun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adversarial Risk via Optimal Transport and Optimal Couplings</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>67</volume><issue>9</issue><spage>6031</spage><epage>6052</epage><pages>6031-6052</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Modern machine learning algorithms perform poorly on adversarially manipulated data. Adversarial risk quantifies the error of classifiers in adversarial settings; adversarial classifiers minimize adversarial risk. In this paper, we analyze adversarial risk and adversarial classifiers from an optimal transport perspective. We show that the optimal adversarial risk for binary classification with 0-1 loss is determined by an optimal transport cost between the probability distributions of the two classes. We develop optimal transport plans (probabilistic couplings) for univariate distributions such as the normal, the uniform, and the triangular distribution. We also derive optimal adversarial classifiers in these settings. Our analysis leads to algorithm-independent fundamental limits on adversarial risk, which we calculate for several real-world datasets. We extend our results to general loss functions under convexity and smoothness assumptions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2021.3100107</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0311-150X</orcidid><orcidid>https://orcid.org/0000-0003-4159-0900</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2021-09, Vol.67 (9), p.6031-6052 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_2565237692 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Classifiers Convexity Couplings information theory Kernel Loss measurement Machine learning Measurement Perturbation methods Q measurement Risk analysis robustness Smoothness Statistical analysis statistical learning Transportation planning |
title | Adversarial Risk via Optimal Transport and Optimal Couplings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adversarial%20Risk%20via%20Optimal%20Transport%20and%20Optimal%20Couplings&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Pydi,%20Muni%20Sreenivas&rft.date=2021-09-01&rft.volume=67&rft.issue=9&rft.spage=6031&rft.epage=6052&rft.pages=6031-6052&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2021.3100107&rft_dat=%3Cproquest_RIE%3E2565237692%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565237692&rft_id=info:pmid/&rft_ieee_id=9496634&rfr_iscdi=true |