Chopper-stabilized Multipath Instrumentation Amplifier with Output Voltage Offset Compensation Using R-2R Digital-to-Analog Converter

This paper presents a 3-opamp resistive bridge sensor analog front-end (AFE) integrated circuit (IC) with offset voltage compensation using an R-2R digital-to-analog converter (DAC). The proposed IC is implemented with a 3-opamp instrumentation amplifier (IA) to achieve high gain, high input impedan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and materials 2021-08, Vol.33 (8), p.2709
Hauptverfasser: Heo, Hyunwoo, Kim, Hyungseup, You, Donggeun, Kwon, Yongsu, Cho, Dong-il “Dan”, Ko, Hyoungho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 2709
container_title Sensors and materials
container_volume 33
creator Heo, Hyunwoo
Kim, Hyungseup
You, Donggeun
Kwon, Yongsu
Cho, Dong-il “Dan”
Ko, Hyoungho
description This paper presents a 3-opamp resistive bridge sensor analog front-end (AFE) integrated circuit (IC) with offset voltage compensation using an R-2R digital-to-analog converter (DAC). The proposed IC is implemented with a 3-opamp instrumentation amplifier (IA) to achieve high gain, high input impedance, and linearity. The two amplifiers in the first stage are multipath amplifiers with a chopper stabilization technique and ripple reduction loop (RRL). The chopper stabilization technique reduces 1/f flicker noise and DC offset, and the RRL mitigates the output ripple voltage resulting from the chopper stabilization technique. The multipath amplifier scheme compensates the notch characteristic in the frequency response caused by the RRL. A fully differential amplifier with a class-AB output stage is used in the second stage to achieve power efficiency. The 12-bit R-2R DAC is implemented to compensate the offset of the second-stage output of the IA. The IA gain can be controlled from 12 to 48 dB using 2-bit and 3-bit programmable feedback resistor arrays in the first and second stages, respectively. The proposed IC is designed with a 0.18 μm complementary metal-oxide-semiconductor (CMOS) process and has an active area of 7.2 mm2. The simulated input-referred noise is 36.7 nV/√Hz at a frequency of 1 Hz and the simulated input offset voltage is 2.2 μV.
doi_str_mv 10.18494/SAM.2021.3351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565202788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565202788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-8a0abab435ce482a43410227469288a3fa95c6492c1f1786b20f5cd48bc5457a3</originalsourceid><addsrcrecordid>eNotkDtPwzAURi0EEhV0ZbbE7OBn4oxReFVqValQ1shJndRVEgfbAcHO_yalTHf4zr367gHghuCISJ7yu5dsFVFMScSYIGdgRjkTCMs4PQcznBKOeMrEJZh7f8AYEylwTOMZ-Mn3dhi0Qz6o0rTmW-_gamyDGVTYw0Xvgxs73QcVjO1h1g2tqY128NNM8XoMwxjgm22DajRc17XXAea2G3TvTxtbb_oGbhDdwHvTmKBaFCzKetXaZiL7D-2Cdtfgolat1_P_eQW2jw-v-TNarp8WebZEFaMyIKmwKlU5fVZpLqnijBNMacLjlEqpWK1SUcU8pRWpSSLjkuJaVDsuy0pwkSh2BW5Pdwdn30ftQ3Gwo5vK-IKKWEz-EiknKjpRlbPeO10XgzOdcl8FwcWf7WKyXRxtF0fb7Bf5FnN5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565202788</pqid></control><display><type>article</type><title>Chopper-stabilized Multipath Instrumentation Amplifier with Output Voltage Offset Compensation Using R-2R Digital-to-Analog Converter</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Heo, Hyunwoo ; Kim, Hyungseup ; You, Donggeun ; Kwon, Yongsu ; Cho, Dong-il “Dan” ; Ko, Hyoungho</creator><creatorcontrib>Heo, Hyunwoo ; Kim, Hyungseup ; You, Donggeun ; Kwon, Yongsu ; Cho, Dong-il “Dan” ; Ko, Hyoungho</creatorcontrib><description>This paper presents a 3-opamp resistive bridge sensor analog front-end (AFE) integrated circuit (IC) with offset voltage compensation using an R-2R digital-to-analog converter (DAC). The proposed IC is implemented with a 3-opamp instrumentation amplifier (IA) to achieve high gain, high input impedance, and linearity. The two amplifiers in the first stage are multipath amplifiers with a chopper stabilization technique and ripple reduction loop (RRL). The chopper stabilization technique reduces 1/f flicker noise and DC offset, and the RRL mitigates the output ripple voltage resulting from the chopper stabilization technique. The multipath amplifier scheme compensates the notch characteristic in the frequency response caused by the RRL. A fully differential amplifier with a class-AB output stage is used in the second stage to achieve power efficiency. The 12-bit R-2R DAC is implemented to compensate the offset of the second-stage output of the IA. The IA gain can be controlled from 12 to 48 dB using 2-bit and 3-bit programmable feedback resistor arrays in the first and second stages, respectively. The proposed IC is designed with a 0.18 μm complementary metal-oxide-semiconductor (CMOS) process and has an active area of 7.2 mm2. The simulated input-referred noise is 36.7 nV/√Hz at a frequency of 1 Hz and the simulated input offset voltage is 2.2 μV.</description><identifier>ISSN: 0914-4935</identifier><identifier>EISSN: 2435-0869</identifier><identifier>DOI: 10.18494/SAM.2021.3351</identifier><language>eng</language><publisher>Tokyo: MYU Scientific Publishing Division</publisher><subject>Amplification ; Analog circuits ; CMOS ; Compensation ; Differential amplifiers ; Digital to analog conversion ; Digital to analog converters ; Electric potential ; Flicker ; Frequency response ; High gain ; Input impedance ; Instruments ; Integrated circuits ; Power efficiency ; Ripples ; Stabilization ; Voltage</subject><ispartof>Sensors and materials, 2021-08, Vol.33 (8), p.2709</ispartof><rights>Copyright MYU Scientific Publishing Division 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Heo, Hyunwoo</creatorcontrib><creatorcontrib>Kim, Hyungseup</creatorcontrib><creatorcontrib>You, Donggeun</creatorcontrib><creatorcontrib>Kwon, Yongsu</creatorcontrib><creatorcontrib>Cho, Dong-il “Dan”</creatorcontrib><creatorcontrib>Ko, Hyoungho</creatorcontrib><title>Chopper-stabilized Multipath Instrumentation Amplifier with Output Voltage Offset Compensation Using R-2R Digital-to-Analog Converter</title><title>Sensors and materials</title><description>This paper presents a 3-opamp resistive bridge sensor analog front-end (AFE) integrated circuit (IC) with offset voltage compensation using an R-2R digital-to-analog converter (DAC). The proposed IC is implemented with a 3-opamp instrumentation amplifier (IA) to achieve high gain, high input impedance, and linearity. The two amplifiers in the first stage are multipath amplifiers with a chopper stabilization technique and ripple reduction loop (RRL). The chopper stabilization technique reduces 1/f flicker noise and DC offset, and the RRL mitigates the output ripple voltage resulting from the chopper stabilization technique. The multipath amplifier scheme compensates the notch characteristic in the frequency response caused by the RRL. A fully differential amplifier with a class-AB output stage is used in the second stage to achieve power efficiency. The 12-bit R-2R DAC is implemented to compensate the offset of the second-stage output of the IA. The IA gain can be controlled from 12 to 48 dB using 2-bit and 3-bit programmable feedback resistor arrays in the first and second stages, respectively. The proposed IC is designed with a 0.18 μm complementary metal-oxide-semiconductor (CMOS) process and has an active area of 7.2 mm2. The simulated input-referred noise is 36.7 nV/√Hz at a frequency of 1 Hz and the simulated input offset voltage is 2.2 μV.</description><subject>Amplification</subject><subject>Analog circuits</subject><subject>CMOS</subject><subject>Compensation</subject><subject>Differential amplifiers</subject><subject>Digital to analog conversion</subject><subject>Digital to analog converters</subject><subject>Electric potential</subject><subject>Flicker</subject><subject>Frequency response</subject><subject>High gain</subject><subject>Input impedance</subject><subject>Instruments</subject><subject>Integrated circuits</subject><subject>Power efficiency</subject><subject>Ripples</subject><subject>Stabilization</subject><subject>Voltage</subject><issn>0914-4935</issn><issn>2435-0869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAURi0EEhV0ZbbE7OBn4oxReFVqValQ1shJndRVEgfbAcHO_yalTHf4zr367gHghuCISJ7yu5dsFVFMScSYIGdgRjkTCMs4PQcznBKOeMrEJZh7f8AYEylwTOMZ-Mn3dhi0Qz6o0rTmW-_gamyDGVTYw0Xvgxs73QcVjO1h1g2tqY128NNM8XoMwxjgm22DajRc17XXAea2G3TvTxtbb_oGbhDdwHvTmKBaFCzKetXaZiL7D-2Cdtfgolat1_P_eQW2jw-v-TNarp8WebZEFaMyIKmwKlU5fVZpLqnijBNMacLjlEqpWK1SUcU8pRWpSSLjkuJaVDsuy0pwkSh2BW5Pdwdn30ftQ3Gwo5vK-IKKWEz-EiknKjpRlbPeO10XgzOdcl8FwcWf7WKyXRxtF0fb7Bf5FnN5</recordid><startdate>20210817</startdate><enddate>20210817</enddate><creator>Heo, Hyunwoo</creator><creator>Kim, Hyungseup</creator><creator>You, Donggeun</creator><creator>Kwon, Yongsu</creator><creator>Cho, Dong-il “Dan”</creator><creator>Ko, Hyoungho</creator><general>MYU Scientific Publishing Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20210817</creationdate><title>Chopper-stabilized Multipath Instrumentation Amplifier with Output Voltage Offset Compensation Using R-2R Digital-to-Analog Converter</title><author>Heo, Hyunwoo ; Kim, Hyungseup ; You, Donggeun ; Kwon, Yongsu ; Cho, Dong-il “Dan” ; Ko, Hyoungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-8a0abab435ce482a43410227469288a3fa95c6492c1f1786b20f5cd48bc5457a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplification</topic><topic>Analog circuits</topic><topic>CMOS</topic><topic>Compensation</topic><topic>Differential amplifiers</topic><topic>Digital to analog conversion</topic><topic>Digital to analog converters</topic><topic>Electric potential</topic><topic>Flicker</topic><topic>Frequency response</topic><topic>High gain</topic><topic>Input impedance</topic><topic>Instruments</topic><topic>Integrated circuits</topic><topic>Power efficiency</topic><topic>Ripples</topic><topic>Stabilization</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heo, Hyunwoo</creatorcontrib><creatorcontrib>Kim, Hyungseup</creatorcontrib><creatorcontrib>You, Donggeun</creatorcontrib><creatorcontrib>Kwon, Yongsu</creatorcontrib><creatorcontrib>Cho, Dong-il “Dan”</creatorcontrib><creatorcontrib>Ko, Hyoungho</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heo, Hyunwoo</au><au>Kim, Hyungseup</au><au>You, Donggeun</au><au>Kwon, Yongsu</au><au>Cho, Dong-il “Dan”</au><au>Ko, Hyoungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chopper-stabilized Multipath Instrumentation Amplifier with Output Voltage Offset Compensation Using R-2R Digital-to-Analog Converter</atitle><jtitle>Sensors and materials</jtitle><date>2021-08-17</date><risdate>2021</risdate><volume>33</volume><issue>8</issue><spage>2709</spage><pages>2709-</pages><issn>0914-4935</issn><eissn>2435-0869</eissn><abstract>This paper presents a 3-opamp resistive bridge sensor analog front-end (AFE) integrated circuit (IC) with offset voltage compensation using an R-2R digital-to-analog converter (DAC). The proposed IC is implemented with a 3-opamp instrumentation amplifier (IA) to achieve high gain, high input impedance, and linearity. The two amplifiers in the first stage are multipath amplifiers with a chopper stabilization technique and ripple reduction loop (RRL). The chopper stabilization technique reduces 1/f flicker noise and DC offset, and the RRL mitigates the output ripple voltage resulting from the chopper stabilization technique. The multipath amplifier scheme compensates the notch characteristic in the frequency response caused by the RRL. A fully differential amplifier with a class-AB output stage is used in the second stage to achieve power efficiency. The 12-bit R-2R DAC is implemented to compensate the offset of the second-stage output of the IA. The IA gain can be controlled from 12 to 48 dB using 2-bit and 3-bit programmable feedback resistor arrays in the first and second stages, respectively. The proposed IC is designed with a 0.18 μm complementary metal-oxide-semiconductor (CMOS) process and has an active area of 7.2 mm2. The simulated input-referred noise is 36.7 nV/√Hz at a frequency of 1 Hz and the simulated input offset voltage is 2.2 μV.</abstract><cop>Tokyo</cop><pub>MYU Scientific Publishing Division</pub><doi>10.18494/SAM.2021.3351</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0914-4935
ispartof Sensors and materials, 2021-08, Vol.33 (8), p.2709
issn 0914-4935
2435-0869
language eng
recordid cdi_proquest_journals_2565202788
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Amplification
Analog circuits
CMOS
Compensation
Differential amplifiers
Digital to analog conversion
Digital to analog converters
Electric potential
Flicker
Frequency response
High gain
Input impedance
Instruments
Integrated circuits
Power efficiency
Ripples
Stabilization
Voltage
title Chopper-stabilized Multipath Instrumentation Amplifier with Output Voltage Offset Compensation Using R-2R Digital-to-Analog Converter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chopper-stabilized%20Multipath%20Instrumentation%20Amplifier%20with%20Output%20Voltage%20Offset%20Compensation%20Using%20R-2R%20Digital-to-Analog%20Converter&rft.jtitle=Sensors%20and%20materials&rft.au=Heo,%20Hyunwoo&rft.date=2021-08-17&rft.volume=33&rft.issue=8&rft.spage=2709&rft.pages=2709-&rft.issn=0914-4935&rft.eissn=2435-0869&rft_id=info:doi/10.18494/SAM.2021.3351&rft_dat=%3Cproquest_cross%3E2565202788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565202788&rft_id=info:pmid/&rfr_iscdi=true