Application of maximal monotone operator method for solving Hamilton–Jacobi–Bellman equation arising from optimal portfolio selection problem
In this paper, we investigate a fully nonlinear evolutionary Hamilton–Jacobi–Bellman (HJB) parabolic equation utilizing the monotone operator technique. We consider the HJB equation arising from portfolio optimization selection, where the goal is to maximize the conditional expected value of the ter...
Gespeichert in:
Veröffentlicht in: | Japan journal of industrial and applied mathematics 2021-09, Vol.38 (3), p.693-713 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 713 |
---|---|
container_issue | 3 |
container_start_page | 693 |
container_title | Japan journal of industrial and applied mathematics |
container_volume | 38 |
creator | Udeani, Cyril Izuchukwu Ševčovič, Daniel |
description | In this paper, we investigate a fully nonlinear evolutionary Hamilton–Jacobi–Bellman (HJB) parabolic equation utilizing the monotone operator technique. We consider the HJB equation arising from portfolio optimization selection, where the goal is to maximize the conditional expected value of the terminal utility of the portfolio. The fully nonlinear HJB equation is transformed into a quasilinear parabolic equation using the so-called Riccati transformation method. The transformed parabolic equation can be viewed as the porous media type of equation with source term. Under some assumptions, we obtain that the diffusion function to the quasilinear parabolic equation is globally Lipschitz continuous, which is a crucial requirement for solving the Cauchy problem. We employ Banach’s fixed point theorem to obtain the existence and uniqueness of a solution to the general form of the transformed parabolic equation in a suitable Sobolev space in an abstract setting. Some financial applications of the proposed result are presented in one-dimensional space. |
doi_str_mv | 10.1007/s13160-021-00468-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565099291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565099291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e1de547388ffb43acaaf575b9b48c3b3f3ed7906aa95ffea90823d5593e74e823</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyWmAN2HCfxWCp-hcQCEpvlpNeQyslN7ZSfjVdAvCFPgmmQ2Jh8hu98Vz6EHHJ2zBkrTgIXPGcJS3nCWJaXycsWmfAyBiWKh20yYYrnScGY3CV7ISw3EOcT8jHre9fUZmiwo2hpa16b1jjaYocDdkCxB28G9LSF4QkX1MYY0D033SO9NG3jIvX1_nltaqyaGE7BudZ0FFbrUWp8E35g67GNtmGj79EPFl2DNICDegP2HisH7T7ZscYFOPh9p-T-_Oxufpnc3F5czWc3SS1EPiTAFyCzQpSltVUmTG2MlYWsVJWVtaiEFbAoFMuNUdJaMIqVqVhIqQQUGcQ8JUejN95drSEMeolr38WTOpW5ZEqlikcqHanaYwgerO59_IF_05zpn-n1OL2O0-vNqvollsRYChHuHsH_qf9pfQMa744x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565099291</pqid></control><display><type>article</type><title>Application of maximal monotone operator method for solving Hamilton–Jacobi–Bellman equation arising from optimal portfolio selection problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Udeani, Cyril Izuchukwu ; Ševčovič, Daniel</creator><creatorcontrib>Udeani, Cyril Izuchukwu ; Ševčovič, Daniel</creatorcontrib><description>In this paper, we investigate a fully nonlinear evolutionary Hamilton–Jacobi–Bellman (HJB) parabolic equation utilizing the monotone operator technique. We consider the HJB equation arising from portfolio optimization selection, where the goal is to maximize the conditional expected value of the terminal utility of the portfolio. The fully nonlinear HJB equation is transformed into a quasilinear parabolic equation using the so-called Riccati transformation method. The transformed parabolic equation can be viewed as the porous media type of equation with source term. Under some assumptions, we obtain that the diffusion function to the quasilinear parabolic equation is globally Lipschitz continuous, which is a crucial requirement for solving the Cauchy problem. We employ Banach’s fixed point theorem to obtain the existence and uniqueness of a solution to the general form of the transformed parabolic equation in a suitable Sobolev space in an abstract setting. Some financial applications of the proposed result are presented in one-dimensional space.</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-021-00468-w</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Applications of Mathematics ; Cauchy problems ; Computational Mathematics and Numerical Analysis ; Existence theorems ; Fixed points (mathematics) ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Optimization ; Original Paper ; Porous media ; Sobolev space</subject><ispartof>Japan journal of industrial and applied mathematics, 2021-09, Vol.38 (3), p.693-713</ispartof><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2021</rights><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-e1de547388ffb43acaaf575b9b48c3b3f3ed7906aa95ffea90823d5593e74e823</cites><orcidid>0000-0002-1488-7736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13160-021-00468-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13160-021-00468-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Udeani, Cyril Izuchukwu</creatorcontrib><creatorcontrib>Ševčovič, Daniel</creatorcontrib><title>Application of maximal monotone operator method for solving Hamilton–Jacobi–Bellman equation arising from optimal portfolio selection problem</title><title>Japan journal of industrial and applied mathematics</title><addtitle>Japan J. Indust. Appl. Math</addtitle><description>In this paper, we investigate a fully nonlinear evolutionary Hamilton–Jacobi–Bellman (HJB) parabolic equation utilizing the monotone operator technique. We consider the HJB equation arising from portfolio optimization selection, where the goal is to maximize the conditional expected value of the terminal utility of the portfolio. The fully nonlinear HJB equation is transformed into a quasilinear parabolic equation using the so-called Riccati transformation method. The transformed parabolic equation can be viewed as the porous media type of equation with source term. Under some assumptions, we obtain that the diffusion function to the quasilinear parabolic equation is globally Lipschitz continuous, which is a crucial requirement for solving the Cauchy problem. We employ Banach’s fixed point theorem to obtain the existence and uniqueness of a solution to the general form of the transformed parabolic equation in a suitable Sobolev space in an abstract setting. Some financial applications of the proposed result are presented in one-dimensional space.</description><subject>Applications of Mathematics</subject><subject>Cauchy problems</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Existence theorems</subject><subject>Fixed points (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Porous media</subject><subject>Sobolev space</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyWmAN2HCfxWCp-hcQCEpvlpNeQyslN7ZSfjVdAvCFPgmmQ2Jh8hu98Vz6EHHJ2zBkrTgIXPGcJS3nCWJaXycsWmfAyBiWKh20yYYrnScGY3CV7ISw3EOcT8jHre9fUZmiwo2hpa16b1jjaYocDdkCxB28G9LSF4QkX1MYY0D033SO9NG3jIvX1_nltaqyaGE7BudZ0FFbrUWp8E35g67GNtmGj79EPFl2DNICDegP2HisH7T7ZscYFOPh9p-T-_Oxufpnc3F5czWc3SS1EPiTAFyCzQpSltVUmTG2MlYWsVJWVtaiEFbAoFMuNUdJaMIqVqVhIqQQUGcQ8JUejN95drSEMeolr38WTOpW5ZEqlikcqHanaYwgerO59_IF_05zpn-n1OL2O0-vNqvollsRYChHuHsH_qf9pfQMa744x</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Udeani, Cyril Izuchukwu</creator><creator>Ševčovič, Daniel</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1488-7736</orcidid></search><sort><creationdate>20210901</creationdate><title>Application of maximal monotone operator method for solving Hamilton–Jacobi–Bellman equation arising from optimal portfolio selection problem</title><author>Udeani, Cyril Izuchukwu ; Ševčovič, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e1de547388ffb43acaaf575b9b48c3b3f3ed7906aa95ffea90823d5593e74e823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Cauchy problems</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Existence theorems</topic><topic>Fixed points (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Porous media</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Udeani, Cyril Izuchukwu</creatorcontrib><creatorcontrib>Ševčovič, Daniel</creatorcontrib><collection>CrossRef</collection><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Udeani, Cyril Izuchukwu</au><au>Ševčovič, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of maximal monotone operator method for solving Hamilton–Jacobi–Bellman equation arising from optimal portfolio selection problem</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><stitle>Japan J. Indust. Appl. Math</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>38</volume><issue>3</issue><spage>693</spage><epage>713</epage><pages>693-713</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>In this paper, we investigate a fully nonlinear evolutionary Hamilton–Jacobi–Bellman (HJB) parabolic equation utilizing the monotone operator technique. We consider the HJB equation arising from portfolio optimization selection, where the goal is to maximize the conditional expected value of the terminal utility of the portfolio. The fully nonlinear HJB equation is transformed into a quasilinear parabolic equation using the so-called Riccati transformation method. The transformed parabolic equation can be viewed as the porous media type of equation with source term. Under some assumptions, we obtain that the diffusion function to the quasilinear parabolic equation is globally Lipschitz continuous, which is a crucial requirement for solving the Cauchy problem. We employ Banach’s fixed point theorem to obtain the existence and uniqueness of a solution to the general form of the transformed parabolic equation in a suitable Sobolev space in an abstract setting. Some financial applications of the proposed result are presented in one-dimensional space.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s13160-021-00468-w</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1488-7736</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-7005 |
ispartof | Japan journal of industrial and applied mathematics, 2021-09, Vol.38 (3), p.693-713 |
issn | 0916-7005 1868-937X |
language | eng |
recordid | cdi_proquest_journals_2565099291 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Cauchy problems Computational Mathematics and Numerical Analysis Existence theorems Fixed points (mathematics) Mathematics Mathematics and Statistics Operators (mathematics) Optimization Original Paper Porous media Sobolev space |
title | Application of maximal monotone operator method for solving Hamilton–Jacobi–Bellman equation arising from optimal portfolio selection problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20maximal%20monotone%20operator%20method%20for%20solving%20Hamilton%E2%80%93Jacobi%E2%80%93Bellman%20equation%20arising%20from%20optimal%20portfolio%20selection%20problem&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Udeani,%20Cyril%20Izuchukwu&rft.date=2021-09-01&rft.volume=38&rft.issue=3&rft.spage=693&rft.epage=713&rft.pages=693-713&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-021-00468-w&rft_dat=%3Cproquest_cross%3E2565099291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565099291&rft_id=info:pmid/&rfr_iscdi=true |