Dehydration of 2,3-Butanediol to 1,3-Butadiene and Methyl Ethyl Ketone: Modeling, Numerical Analysis and Validation Using Pilot-Scale Reactor Data
This work presents the numerical analysis and validation of a fixed bed reactor model for 2,3-butanediol (2,3-BDO) dehydration. The 1D heterogeneous reactor model considering interfacial and intra-particle gradients, was simulated and numerical analysis of the model was conducted to understand the c...
Gespeichert in:
Veröffentlicht in: | Catalysts 2021-08, Vol.11 (8), p.999 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 999 |
container_title | Catalysts |
container_volume | 11 |
creator | Song, Daesung Cho, Sung-Yong Vu, Toan-Thang Duong, Hoang-Phi-Yen Kim, Eunkyu |
description | This work presents the numerical analysis and validation of a fixed bed reactor model for 2,3-butanediol (2,3-BDO) dehydration. The 1D heterogeneous reactor model considering interfacial and intra-particle gradients, was simulated and numerical analysis of the model was conducted to understand the characteristics of the reactions in a catalyst along the reactor length. The model was also validated by comparing predicted performance data with pilot-scale plant data operated at 0.2 bar, 299–343 °C and 0.48–2.02 h−1 of weight hourly space velocity (WHSV). The model showed good agreement with the temperature profile, 2,3-BDO conversion and selectivity of target products. In addition, sensitivity analyses of the model were investigated by changing feed flow rate, feed composition, and inlet temperature. It was found that stable and efficient operation conditions are lower than 0.65 h−1 of WHSV and 330–340 °C of inlet temperature. Additionally, the reactor performance was not affected by 2,3-BDO feed concentration above 70%. |
doi_str_mv | 10.3390/catal11080999 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564800562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564800562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-495796ca80d2b8142f002ef78d238b865872cd24c62af49110eec66c6dba7c7a3</originalsourceid><addsrcrecordid>eNpVkEtPAjEQxzdGEwly9N7EK6t97KPrDQEfEdSoeN2UdlZKyhbb7mG_hp_YFTjoHGYmk9-8_lF0TvAlYwW-kiIIQwjmuCiKo6hHcc7ihCXJ8Z_8NBp4v8adFYRxkvai7wmsWuVE0LZGtkJ0yOKbJogalLYGBYvIoaI01IBErdAcwqo1aLrzjxBsDddobhUYXX8O0VOzAaelMGhUC9N67XddH8Jotd-z8B2IXrSxIX7rQECvIGSwDk26L86ik0oYD4ND7EeL2-n7-D6ePd89jEezWLIchzgp0rzIpOBY0SUnCa0wplDlXFHGlzxLeU6loonMqKiSopMGQGaZzNRS5DIXrB9d7Odunf1qwIdybRvXnexLmmYJxzjNaEfFe0o6672Dqtw6vRGuLQkuf5Uv_ynPfgDgiHaC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564800562</pqid></control><display><type>article</type><title>Dehydration of 2,3-Butanediol to 1,3-Butadiene and Methyl Ethyl Ketone: Modeling, Numerical Analysis and Validation Using Pilot-Scale Reactor Data</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Song, Daesung ; Cho, Sung-Yong ; Vu, Toan-Thang ; Duong, Hoang-Phi-Yen ; Kim, Eunkyu</creator><creatorcontrib>Song, Daesung ; Cho, Sung-Yong ; Vu, Toan-Thang ; Duong, Hoang-Phi-Yen ; Kim, Eunkyu</creatorcontrib><description>This work presents the numerical analysis and validation of a fixed bed reactor model for 2,3-butanediol (2,3-BDO) dehydration. The 1D heterogeneous reactor model considering interfacial and intra-particle gradients, was simulated and numerical analysis of the model was conducted to understand the characteristics of the reactions in a catalyst along the reactor length. The model was also validated by comparing predicted performance data with pilot-scale plant data operated at 0.2 bar, 299–343 °C and 0.48–2.02 h−1 of weight hourly space velocity (WHSV). The model showed good agreement with the temperature profile, 2,3-BDO conversion and selectivity of target products. In addition, sensitivity analyses of the model were investigated by changing feed flow rate, feed composition, and inlet temperature. It was found that stable and efficient operation conditions are lower than 0.65 h−1 of WHSV and 330–340 °C of inlet temperature. Additionally, the reactor performance was not affected by 2,3-BDO feed concentration above 70%.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal11080999</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy ; Butadiene ; Butanediol ; Catalysts ; Ceramic fibers ; Chemical reactions ; Dehydration ; Fixed bed reactors ; Fixed beds ; Flow velocity ; Heat transfer ; Inlet temperature ; Mathematical models ; Methyl ethyl ketone ; Numerical analysis ; Reynolds number ; Selectivity ; Sensitivity analysis ; Temperature profiles</subject><ispartof>Catalysts, 2021-08, Vol.11 (8), p.999</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-495796ca80d2b8142f002ef78d238b865872cd24c62af49110eec66c6dba7c7a3</citedby><cites>FETCH-LOGICAL-c370t-495796ca80d2b8142f002ef78d238b865872cd24c62af49110eec66c6dba7c7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Song, Daesung</creatorcontrib><creatorcontrib>Cho, Sung-Yong</creatorcontrib><creatorcontrib>Vu, Toan-Thang</creatorcontrib><creatorcontrib>Duong, Hoang-Phi-Yen</creatorcontrib><creatorcontrib>Kim, Eunkyu</creatorcontrib><title>Dehydration of 2,3-Butanediol to 1,3-Butadiene and Methyl Ethyl Ketone: Modeling, Numerical Analysis and Validation Using Pilot-Scale Reactor Data</title><title>Catalysts</title><description>This work presents the numerical analysis and validation of a fixed bed reactor model for 2,3-butanediol (2,3-BDO) dehydration. The 1D heterogeneous reactor model considering interfacial and intra-particle gradients, was simulated and numerical analysis of the model was conducted to understand the characteristics of the reactions in a catalyst along the reactor length. The model was also validated by comparing predicted performance data with pilot-scale plant data operated at 0.2 bar, 299–343 °C and 0.48–2.02 h−1 of weight hourly space velocity (WHSV). The model showed good agreement with the temperature profile, 2,3-BDO conversion and selectivity of target products. In addition, sensitivity analyses of the model were investigated by changing feed flow rate, feed composition, and inlet temperature. It was found that stable and efficient operation conditions are lower than 0.65 h−1 of WHSV and 330–340 °C of inlet temperature. Additionally, the reactor performance was not affected by 2,3-BDO feed concentration above 70%.</description><subject>Alternative energy</subject><subject>Butadiene</subject><subject>Butanediol</subject><subject>Catalysts</subject><subject>Ceramic fibers</subject><subject>Chemical reactions</subject><subject>Dehydration</subject><subject>Fixed bed reactors</subject><subject>Fixed beds</subject><subject>Flow velocity</subject><subject>Heat transfer</subject><subject>Inlet temperature</subject><subject>Mathematical models</subject><subject>Methyl ethyl ketone</subject><subject>Numerical analysis</subject><subject>Reynolds number</subject><subject>Selectivity</subject><subject>Sensitivity analysis</subject><subject>Temperature profiles</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkEtPAjEQxzdGEwly9N7EK6t97KPrDQEfEdSoeN2UdlZKyhbb7mG_hp_YFTjoHGYmk9-8_lF0TvAlYwW-kiIIQwjmuCiKo6hHcc7ihCXJ8Z_8NBp4v8adFYRxkvai7wmsWuVE0LZGtkJ0yOKbJogalLYGBYvIoaI01IBErdAcwqo1aLrzjxBsDddobhUYXX8O0VOzAaelMGhUC9N67XddH8Jotd-z8B2IXrSxIX7rQECvIGSwDk26L86ik0oYD4ND7EeL2-n7-D6ePd89jEezWLIchzgp0rzIpOBY0SUnCa0wplDlXFHGlzxLeU6loonMqKiSopMGQGaZzNRS5DIXrB9d7Odunf1qwIdybRvXnexLmmYJxzjNaEfFe0o6672Dqtw6vRGuLQkuf5Uv_ynPfgDgiHaC</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Song, Daesung</creator><creator>Cho, Sung-Yong</creator><creator>Vu, Toan-Thang</creator><creator>Duong, Hoang-Phi-Yen</creator><creator>Kim, Eunkyu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210819</creationdate><title>Dehydration of 2,3-Butanediol to 1,3-Butadiene and Methyl Ethyl Ketone: Modeling, Numerical Analysis and Validation Using Pilot-Scale Reactor Data</title><author>Song, Daesung ; Cho, Sung-Yong ; Vu, Toan-Thang ; Duong, Hoang-Phi-Yen ; Kim, Eunkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-495796ca80d2b8142f002ef78d238b865872cd24c62af49110eec66c6dba7c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative energy</topic><topic>Butadiene</topic><topic>Butanediol</topic><topic>Catalysts</topic><topic>Ceramic fibers</topic><topic>Chemical reactions</topic><topic>Dehydration</topic><topic>Fixed bed reactors</topic><topic>Fixed beds</topic><topic>Flow velocity</topic><topic>Heat transfer</topic><topic>Inlet temperature</topic><topic>Mathematical models</topic><topic>Methyl ethyl ketone</topic><topic>Numerical analysis</topic><topic>Reynolds number</topic><topic>Selectivity</topic><topic>Sensitivity analysis</topic><topic>Temperature profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Daesung</creatorcontrib><creatorcontrib>Cho, Sung-Yong</creatorcontrib><creatorcontrib>Vu, Toan-Thang</creatorcontrib><creatorcontrib>Duong, Hoang-Phi-Yen</creatorcontrib><creatorcontrib>Kim, Eunkyu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Daesung</au><au>Cho, Sung-Yong</au><au>Vu, Toan-Thang</au><au>Duong, Hoang-Phi-Yen</au><au>Kim, Eunkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dehydration of 2,3-Butanediol to 1,3-Butadiene and Methyl Ethyl Ketone: Modeling, Numerical Analysis and Validation Using Pilot-Scale Reactor Data</atitle><jtitle>Catalysts</jtitle><date>2021-08-19</date><risdate>2021</risdate><volume>11</volume><issue>8</issue><spage>999</spage><pages>999-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>This work presents the numerical analysis and validation of a fixed bed reactor model for 2,3-butanediol (2,3-BDO) dehydration. The 1D heterogeneous reactor model considering interfacial and intra-particle gradients, was simulated and numerical analysis of the model was conducted to understand the characteristics of the reactions in a catalyst along the reactor length. The model was also validated by comparing predicted performance data with pilot-scale plant data operated at 0.2 bar, 299–343 °C and 0.48–2.02 h−1 of weight hourly space velocity (WHSV). The model showed good agreement with the temperature profile, 2,3-BDO conversion and selectivity of target products. In addition, sensitivity analyses of the model were investigated by changing feed flow rate, feed composition, and inlet temperature. It was found that stable and efficient operation conditions are lower than 0.65 h−1 of WHSV and 330–340 °C of inlet temperature. Additionally, the reactor performance was not affected by 2,3-BDO feed concentration above 70%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal11080999</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4344 |
ispartof | Catalysts, 2021-08, Vol.11 (8), p.999 |
issn | 2073-4344 2073-4344 |
language | eng |
recordid | cdi_proquest_journals_2564800562 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Alternative energy Butadiene Butanediol Catalysts Ceramic fibers Chemical reactions Dehydration Fixed bed reactors Fixed beds Flow velocity Heat transfer Inlet temperature Mathematical models Methyl ethyl ketone Numerical analysis Reynolds number Selectivity Sensitivity analysis Temperature profiles |
title | Dehydration of 2,3-Butanediol to 1,3-Butadiene and Methyl Ethyl Ketone: Modeling, Numerical Analysis and Validation Using Pilot-Scale Reactor Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dehydration%20of%202,3-Butanediol%20to%201,3-Butadiene%20and%20Methyl%20Ethyl%20Ketone:%20Modeling,%20Numerical%20Analysis%20and%20Validation%20Using%20Pilot-Scale%20Reactor%20Data&rft.jtitle=Catalysts&rft.au=Song,%20Daesung&rft.date=2021-08-19&rft.volume=11&rft.issue=8&rft.spage=999&rft.pages=999-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal11080999&rft_dat=%3Cproquest_cross%3E2564800562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564800562&rft_id=info:pmid/&rfr_iscdi=true |