Influence of swirl on the supersonic wake flow structure behind blunt-based axisymmetric afterbodies
Wind-tunnel experiments have been conducted on cylindrical models with canted fins. The fins introduced a swirling motion into the wake downstream of a blunt-based afterbody aligned with a Mach 2 flow. Measurements of the velocity field downstream of the models and the pressure distribution at the m...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-10, Vol.925, Article A21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 925 |
creator | Weidner, S. Hruschka, R. Leopold, F. |
description | Wind-tunnel experiments have been conducted on cylindrical models with canted fins. The fins introduced a swirling motion into the wake downstream of a blunt-based afterbody aligned with a Mach 2 flow. Measurements of the velocity field downstream of the models and the pressure distribution at the model base show evidence of two wake flow patterns distinctively differing from the classical supersonic wake, depending on the degree of rotation introduced. For a fin-cant angle of 16$^\circ$, a rotating wake flow with a central, downstream-directed vortex tube and a concentric, counter-rotating, toric vortex pair forms. A higher fin-cant angle of 32$^\circ$, in turn, results in a swirling flow surrounding a region of low-momentum flow at the axis. Near the central axis of the flow field an upstream flow establishes, extending from the far wake up to the model base. Numerical simulations have been performed to explain the fluid-dynamic processes and the origins of the experimentally observed structural changes of the rotating wakes. The results of the large-scale-turbulence-resolving simulations agree qualitatively well with the measured flow fields. The numerical results show that the centrifugal forces decrease the base pressure and cause the experimentally observed structural changes in the wake. |
doi_str_mv | 10.1017/jfm.2021.465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564762440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_465</cupid><sourcerecordid>2564762440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-1d9a352a407f30cbcce0b9e64124d3dae9409ae442d07729e6ca538bdd01b1b93</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EEqWw4wMssSVh7DgJXqKKR6VKbGAd-TGmKUlcbEeFvydVK7FhNYt77h3pEHLNIGfA6ruN63MOnOWiKk_IjIlKZnUlylMyA-A8Y4zDObmIcQPACpD1jNjl4LoRB4PUOxp3beioH2haI43jFkP0Q2voTn0idZ3f0ZjCaNIYkGpct4OluhuHlGkV0VL13cafvscUpo5yCYP2tsV4Sc6c6iJeHe-cvD89vi1estXr83LxsMoML2XKmJWqKLkSULsCjDYGQUusBOPCFlahFCAVCsEt1DWfEqPK4l5bC0wzLYs5uTnsboP_GjGmZuPHMEwvG15Woq64EDBRtwfKBB9jQNdsQ9ur8NMwaPYem8ljs_fYTB4nPD_iqtehtR_4t_pv4Ret4nbZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564762440</pqid></control><display><type>article</type><title>Influence of swirl on the supersonic wake flow structure behind blunt-based axisymmetric afterbodies</title><source>Cambridge University Press Journals Complete</source><creator>Weidner, S. ; Hruschka, R. ; Leopold, F.</creator><creatorcontrib>Weidner, S. ; Hruschka, R. ; Leopold, F.</creatorcontrib><description>Wind-tunnel experiments have been conducted on cylindrical models with canted fins. The fins introduced a swirling motion into the wake downstream of a blunt-based afterbody aligned with a Mach 2 flow. Measurements of the velocity field downstream of the models and the pressure distribution at the model base show evidence of two wake flow patterns distinctively differing from the classical supersonic wake, depending on the degree of rotation introduced. For a fin-cant angle of 16$^\circ$, a rotating wake flow with a central, downstream-directed vortex tube and a concentric, counter-rotating, toric vortex pair forms. A higher fin-cant angle of 32$^\circ$, in turn, results in a swirling flow surrounding a region of low-momentum flow at the axis. Near the central axis of the flow field an upstream flow establishes, extending from the far wake up to the model base. Numerical simulations have been performed to explain the fluid-dynamic processes and the origins of the experimentally observed structural changes of the rotating wakes. The results of the large-scale-turbulence-resolving simulations agree qualitatively well with the measured flow fields. The numerical results show that the centrifugal forces decrease the base pressure and cause the experimentally observed structural changes in the wake.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.465</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Afterbodies ; Base pressure ; Centrifugal force ; Computational fluid dynamics ; Fins ; Flow distribution ; Flow pattern ; Flow structures ; Fluid flow ; JFM Papers ; Mathematical models ; Momentum ; Nozzle geometry ; Pressure distribution ; Reynolds number ; Rotation ; Simulation ; Stress concentration ; Swirling ; Turbulence ; Velocity distribution ; Wakes ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Journal of fluid mechanics, 2021-10, Vol.925, Article A21</ispartof><rights>French–German Research Institute of Saint-Louis, 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-1d9a352a407f30cbcce0b9e64124d3dae9409ae442d07729e6ca538bdd01b1b93</cites><orcidid>0000-0002-7658-7755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112021004651/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Weidner, S.</creatorcontrib><creatorcontrib>Hruschka, R.</creatorcontrib><creatorcontrib>Leopold, F.</creatorcontrib><title>Influence of swirl on the supersonic wake flow structure behind blunt-based axisymmetric afterbodies</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Wind-tunnel experiments have been conducted on cylindrical models with canted fins. The fins introduced a swirling motion into the wake downstream of a blunt-based afterbody aligned with a Mach 2 flow. Measurements of the velocity field downstream of the models and the pressure distribution at the model base show evidence of two wake flow patterns distinctively differing from the classical supersonic wake, depending on the degree of rotation introduced. For a fin-cant angle of 16$^\circ$, a rotating wake flow with a central, downstream-directed vortex tube and a concentric, counter-rotating, toric vortex pair forms. A higher fin-cant angle of 32$^\circ$, in turn, results in a swirling flow surrounding a region of low-momentum flow at the axis. Near the central axis of the flow field an upstream flow establishes, extending from the far wake up to the model base. Numerical simulations have been performed to explain the fluid-dynamic processes and the origins of the experimentally observed structural changes of the rotating wakes. The results of the large-scale-turbulence-resolving simulations agree qualitatively well with the measured flow fields. The numerical results show that the centrifugal forces decrease the base pressure and cause the experimentally observed structural changes in the wake.</description><subject>Afterbodies</subject><subject>Base pressure</subject><subject>Centrifugal force</subject><subject>Computational fluid dynamics</subject><subject>Fins</subject><subject>Flow distribution</subject><subject>Flow pattern</subject><subject>Flow structures</subject><subject>Fluid flow</subject><subject>JFM Papers</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>Nozzle geometry</subject><subject>Pressure distribution</subject><subject>Reynolds number</subject><subject>Rotation</subject><subject>Simulation</subject><subject>Stress concentration</subject><subject>Swirling</subject><subject>Turbulence</subject><subject>Velocity distribution</subject><subject>Wakes</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkMtOwzAQRS0EEqWw4wMssSVh7DgJXqKKR6VKbGAd-TGmKUlcbEeFvydVK7FhNYt77h3pEHLNIGfA6ruN63MOnOWiKk_IjIlKZnUlylMyA-A8Y4zDObmIcQPACpD1jNjl4LoRB4PUOxp3beioH2haI43jFkP0Q2voTn0idZ3f0ZjCaNIYkGpct4OluhuHlGkV0VL13cafvscUpo5yCYP2tsV4Sc6c6iJeHe-cvD89vi1estXr83LxsMoML2XKmJWqKLkSULsCjDYGQUusBOPCFlahFCAVCsEt1DWfEqPK4l5bC0wzLYs5uTnsboP_GjGmZuPHMEwvG15Woq64EDBRtwfKBB9jQNdsQ9ur8NMwaPYem8ljs_fYTB4nPD_iqtehtR_4t_pv4Ret4nbZ</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Weidner, S.</creator><creator>Hruschka, R.</creator><creator>Leopold, F.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7658-7755</orcidid></search><sort><creationdate>20211025</creationdate><title>Influence of swirl on the supersonic wake flow structure behind blunt-based axisymmetric afterbodies</title><author>Weidner, S. ; Hruschka, R. ; Leopold, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-1d9a352a407f30cbcce0b9e64124d3dae9409ae442d07729e6ca538bdd01b1b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Afterbodies</topic><topic>Base pressure</topic><topic>Centrifugal force</topic><topic>Computational fluid dynamics</topic><topic>Fins</topic><topic>Flow distribution</topic><topic>Flow pattern</topic><topic>Flow structures</topic><topic>Fluid flow</topic><topic>JFM Papers</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>Nozzle geometry</topic><topic>Pressure distribution</topic><topic>Reynolds number</topic><topic>Rotation</topic><topic>Simulation</topic><topic>Stress concentration</topic><topic>Swirling</topic><topic>Turbulence</topic><topic>Velocity distribution</topic><topic>Wakes</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weidner, S.</creatorcontrib><creatorcontrib>Hruschka, R.</creatorcontrib><creatorcontrib>Leopold, F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weidner, S.</au><au>Hruschka, R.</au><au>Leopold, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of swirl on the supersonic wake flow structure behind blunt-based axisymmetric afterbodies</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-10-25</date><risdate>2021</risdate><volume>925</volume><artnum>A21</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Wind-tunnel experiments have been conducted on cylindrical models with canted fins. The fins introduced a swirling motion into the wake downstream of a blunt-based afterbody aligned with a Mach 2 flow. Measurements of the velocity field downstream of the models and the pressure distribution at the model base show evidence of two wake flow patterns distinctively differing from the classical supersonic wake, depending on the degree of rotation introduced. For a fin-cant angle of 16$^\circ$, a rotating wake flow with a central, downstream-directed vortex tube and a concentric, counter-rotating, toric vortex pair forms. A higher fin-cant angle of 32$^\circ$, in turn, results in a swirling flow surrounding a region of low-momentum flow at the axis. Near the central axis of the flow field an upstream flow establishes, extending from the far wake up to the model base. Numerical simulations have been performed to explain the fluid-dynamic processes and the origins of the experimentally observed structural changes of the rotating wakes. The results of the large-scale-turbulence-resolving simulations agree qualitatively well with the measured flow fields. The numerical results show that the centrifugal forces decrease the base pressure and cause the experimentally observed structural changes in the wake.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.465</doi><tpages>49</tpages><orcidid>https://orcid.org/0000-0002-7658-7755</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2021-10, Vol.925, Article A21 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2564762440 |
source | Cambridge University Press Journals Complete |
subjects | Afterbodies Base pressure Centrifugal force Computational fluid dynamics Fins Flow distribution Flow pattern Flow structures Fluid flow JFM Papers Mathematical models Momentum Nozzle geometry Pressure distribution Reynolds number Rotation Simulation Stress concentration Swirling Turbulence Velocity distribution Wakes Wind tunnel testing Wind tunnels |
title | Influence of swirl on the supersonic wake flow structure behind blunt-based axisymmetric afterbodies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20swirl%20on%20the%20supersonic%20wake%20flow%20structure%20behind%20blunt-based%20axisymmetric%20afterbodies&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Weidner,%20S.&rft.date=2021-10-25&rft.volume=925&rft.artnum=A21&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.465&rft_dat=%3Cproquest_cross%3E2564762440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564762440&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_465&rfr_iscdi=true |