Charting the API minefield using software telemetry data
Programs draw significant parts of their functionality through the use of Application Programming Interfaces ( API s). Apart from the way developers incorporate API s in their software, the stability of these programs depends on the design and implementation of the API s. In this work, we report how...
Gespeichert in:
Veröffentlicht in: | Empirical software engineering : an international journal 2015-12, Vol.20 (6), p.1785-1830 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1830 |
---|---|
container_issue | 6 |
container_start_page | 1785 |
container_title | Empirical software engineering : an international journal |
container_volume | 20 |
creator | Kechagia, Maria Mitropoulos, Dimitris Spinellis, Diomidis |
description | Programs draw significant parts of their functionality through the use of Application Programming Interfaces (
API
s). Apart from the way developers incorporate
API
s in their software, the stability of these programs depends on the design and implementation of the
API
s. In this work, we report how we used software telemetry data to analyze the causes of
API
failures in Android applications. Specifically, we got 4.9
gb
worth of crash data that thousands of applications sent to a centralized crash report management service. We processed that data to extract approximately a million stack traces, stitching together parts of chained exceptions, and established heuristic rules to draw the border between applications and the
API
calls. We examined a set of more than a half million stack traces associated with risky
API
calls to map the space of the most common application failure reasons. Our findings show that the top ones can be attributed to memory exhaustion, race conditions or deadlocks, and missing or corrupt resources. Given the classes of the crash causes we identified, we recommend
API
design and implementation choices, such as specific exceptions, default resources, and non-blocking algorithms, that can eliminate common failures. In addition, we argue that development tools like memory analyzers, thread debuggers, and static analyzers can prevent crashes through early code testing and analysis. Finally, some execution platform and framework designs for process and memory management can also eliminate some application crashes. |
doi_str_mv | 10.1007/s10664-014-9343-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564698477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564698477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-82b589ca2d0d86a869a4c0a9256ff2a0131f01cc718e0530a450fc7b8ed2ca973</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A6-jNY_JYlqK2UNCFrkOaSdop7UxNUqT_3gwjuHJ1D5dzzr18CN0TeCQA8ikREIJjIBxrxhmWF2hCalmEIOKyaKYoZrQW1-gmpR0AaMnrCVLzrY257TZV3vpq9r6sDm3nQ-v3TXVKwz71IX_b6Kvs9_7gczxXjc32Fl0Fu0_-7ndO0efL88d8gVdvr8v5bIUdpzpjRde10s7SBholrBLacgdWl09CoBYIIwGIc5IoDzUDy2sITq6Vb6izWrIpehh7j7H_OvmUza4_xa6cNKWDC624HFxkdLnYpxR9MMfYHmw8GwJmAGRGQKYAMgMgM2TomEnF2218_Gv-P_QDbvhnNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564698477</pqid></control><display><type>article</type><title>Charting the API minefield using software telemetry data</title><source>SpringerNature Journals</source><creator>Kechagia, Maria ; Mitropoulos, Dimitris ; Spinellis, Diomidis</creator><creatorcontrib>Kechagia, Maria ; Mitropoulos, Dimitris ; Spinellis, Diomidis</creatorcontrib><description>Programs draw significant parts of their functionality through the use of Application Programming Interfaces (
API
s). Apart from the way developers incorporate
API
s in their software, the stability of these programs depends on the design and implementation of the
API
s. In this work, we report how we used software telemetry data to analyze the causes of
API
failures in Android applications. Specifically, we got 4.9
gb
worth of crash data that thousands of applications sent to a centralized crash report management service. We processed that data to extract approximately a million stack traces, stitching together parts of chained exceptions, and established heuristic rules to draw the border between applications and the
API
calls. We examined a set of more than a half million stack traces associated with risky
API
calls to map the space of the most common application failure reasons. Our findings show that the top ones can be attributed to memory exhaustion, race conditions or deadlocks, and missing or corrupt resources. Given the classes of the crash causes we identified, we recommend
API
design and implementation choices, such as specific exceptions, default resources, and non-blocking algorithms, that can eliminate common failures. In addition, we argue that development tools like memory analyzers, thread debuggers, and static analyzers can prevent crashes through early code testing and analysis. Finally, some execution platform and framework designs for process and memory management can also eliminate some application crashes.</description><identifier>ISSN: 1382-3256</identifier><identifier>EISSN: 1573-7616</identifier><identifier>DOI: 10.1007/s10664-014-9343-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analyzers ; Application programming interface ; Compilers ; Computer Science ; Crashes ; Interpreters ; Memory management ; Programming Languages ; Software ; Software Engineering/Programming and Operating Systems ; Stitching ; Telemetry</subject><ispartof>Empirical software engineering : an international journal, 2015-12, Vol.20 (6), p.1785-1830</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2014.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-82b589ca2d0d86a869a4c0a9256ff2a0131f01cc718e0530a450fc7b8ed2ca973</citedby><cites>FETCH-LOGICAL-c429t-82b589ca2d0d86a869a4c0a9256ff2a0131f01cc718e0530a450fc7b8ed2ca973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10664-014-9343-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10664-014-9343-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kechagia, Maria</creatorcontrib><creatorcontrib>Mitropoulos, Dimitris</creatorcontrib><creatorcontrib>Spinellis, Diomidis</creatorcontrib><title>Charting the API minefield using software telemetry data</title><title>Empirical software engineering : an international journal</title><addtitle>Empir Software Eng</addtitle><description>Programs draw significant parts of their functionality through the use of Application Programming Interfaces (
API
s). Apart from the way developers incorporate
API
s in their software, the stability of these programs depends on the design and implementation of the
API
s. In this work, we report how we used software telemetry data to analyze the causes of
API
failures in Android applications. Specifically, we got 4.9
gb
worth of crash data that thousands of applications sent to a centralized crash report management service. We processed that data to extract approximately a million stack traces, stitching together parts of chained exceptions, and established heuristic rules to draw the border between applications and the
API
calls. We examined a set of more than a half million stack traces associated with risky
API
calls to map the space of the most common application failure reasons. Our findings show that the top ones can be attributed to memory exhaustion, race conditions or deadlocks, and missing or corrupt resources. Given the classes of the crash causes we identified, we recommend
API
design and implementation choices, such as specific exceptions, default resources, and non-blocking algorithms, that can eliminate common failures. In addition, we argue that development tools like memory analyzers, thread debuggers, and static analyzers can prevent crashes through early code testing and analysis. Finally, some execution platform and framework designs for process and memory management can also eliminate some application crashes.</description><subject>Algorithms</subject><subject>Analyzers</subject><subject>Application programming interface</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Crashes</subject><subject>Interpreters</subject><subject>Memory management</subject><subject>Programming Languages</subject><subject>Software</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Stitching</subject><subject>Telemetry</subject><issn>1382-3256</issn><issn>1573-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2A6-jNY_JYlqK2UNCFrkOaSdop7UxNUqT_3gwjuHJ1D5dzzr18CN0TeCQA8ikREIJjIBxrxhmWF2hCalmEIOKyaKYoZrQW1-gmpR0AaMnrCVLzrY257TZV3vpq9r6sDm3nQ-v3TXVKwz71IX_b6Kvs9_7gczxXjc32Fl0Fu0_-7ndO0efL88d8gVdvr8v5bIUdpzpjRde10s7SBholrBLacgdWl09CoBYIIwGIc5IoDzUDy2sITq6Vb6izWrIpehh7j7H_OvmUza4_xa6cNKWDC624HFxkdLnYpxR9MMfYHmw8GwJmAGRGQKYAMgMgM2TomEnF2218_Gv-P_QDbvhnNw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Kechagia, Maria</creator><creator>Mitropoulos, Dimitris</creator><creator>Spinellis, Diomidis</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>20151201</creationdate><title>Charting the API minefield using software telemetry data</title><author>Kechagia, Maria ; Mitropoulos, Dimitris ; Spinellis, Diomidis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-82b589ca2d0d86a869a4c0a9256ff2a0131f01cc718e0530a450fc7b8ed2ca973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Analyzers</topic><topic>Application programming interface</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Crashes</topic><topic>Interpreters</topic><topic>Memory management</topic><topic>Programming Languages</topic><topic>Software</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Stitching</topic><topic>Telemetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kechagia, Maria</creatorcontrib><creatorcontrib>Mitropoulos, Dimitris</creatorcontrib><creatorcontrib>Spinellis, Diomidis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Empirical software engineering : an international journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kechagia, Maria</au><au>Mitropoulos, Dimitris</au><au>Spinellis, Diomidis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charting the API minefield using software telemetry data</atitle><jtitle>Empirical software engineering : an international journal</jtitle><stitle>Empir Software Eng</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>20</volume><issue>6</issue><spage>1785</spage><epage>1830</epage><pages>1785-1830</pages><issn>1382-3256</issn><eissn>1573-7616</eissn><abstract>Programs draw significant parts of their functionality through the use of Application Programming Interfaces (
API
s). Apart from the way developers incorporate
API
s in their software, the stability of these programs depends on the design and implementation of the
API
s. In this work, we report how we used software telemetry data to analyze the causes of
API
failures in Android applications. Specifically, we got 4.9
gb
worth of crash data that thousands of applications sent to a centralized crash report management service. We processed that data to extract approximately a million stack traces, stitching together parts of chained exceptions, and established heuristic rules to draw the border between applications and the
API
calls. We examined a set of more than a half million stack traces associated with risky
API
calls to map the space of the most common application failure reasons. Our findings show that the top ones can be attributed to memory exhaustion, race conditions or deadlocks, and missing or corrupt resources. Given the classes of the crash causes we identified, we recommend
API
design and implementation choices, such as specific exceptions, default resources, and non-blocking algorithms, that can eliminate common failures. In addition, we argue that development tools like memory analyzers, thread debuggers, and static analyzers can prevent crashes through early code testing and analysis. Finally, some execution platform and framework designs for process and memory management can also eliminate some application crashes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10664-014-9343-7</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-3256 |
ispartof | Empirical software engineering : an international journal, 2015-12, Vol.20 (6), p.1785-1830 |
issn | 1382-3256 1573-7616 |
language | eng |
recordid | cdi_proquest_journals_2564698477 |
source | SpringerNature Journals |
subjects | Algorithms Analyzers Application programming interface Compilers Computer Science Crashes Interpreters Memory management Programming Languages Software Software Engineering/Programming and Operating Systems Stitching Telemetry |
title | Charting the API minefield using software telemetry data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charting%20the%20API%20minefield%20using%20software%20telemetry%20data&rft.jtitle=Empirical%20software%20engineering%20:%20an%20international%20journal&rft.au=Kechagia,%20Maria&rft.date=2015-12-01&rft.volume=20&rft.issue=6&rft.spage=1785&rft.epage=1830&rft.pages=1785-1830&rft.issn=1382-3256&rft.eissn=1573-7616&rft_id=info:doi/10.1007/s10664-014-9343-7&rft_dat=%3Cproquest_cross%3E2564698477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564698477&rft_id=info:pmid/&rfr_iscdi=true |