Regional Climate Models Validation for Agroclimatology in Romania

Regional climate projections are widely used in impact studies such as adaptations in agronomy. The big challenge of the climate modeling community is to serve valuable instructions regarding the reliability of these simulations to encourage agronomists to use this kind of information properly. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2021-08, Vol.12 (8), p.978, Article 978
Hauptverfasser: Bartok, Blanka, Telcian, Adrian-Sorin, Sacarea, Christian, Horvath, Csaba, Croitoru, Adina-Eliza, Stoian, Vlad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regional climate projections are widely used in impact studies such as adaptations in agronomy. The big challenge of the climate modeling community is to serve valuable instructions regarding the reliability of these simulations to encourage agronomists to use this kind of information properly. The study validates 15 high-resolution ensembles from the Coordinated Regional Climate Downscaling Experiment-European Domain (EURO-CORDEX) for maximum temperature, minimum temperature, and precipitation to fulfill this task. Three evaluation metrics are calculated (mean absolute error, root mean square error, and correlation) for the means and the 5th and 95th percentiles. The analyses are elaborated for annual and monthly means and the vegetation periods of maize and winter wheat. Only arable lands are considered to exclude the effects of the topography. Furthermore, an ensemble selection is applied based on the evaluation metrics to reduce the data use. The five models with the best performance in the case of winter wheat are CNRM-CM5-CLMcom-CCLM4-8-17_v1, MOHC-HadGEM2-ES-IPSL-WRF381P_v1, MOHC-HadGEM2-ES-KNMI-RACMO22E_v2, MOHC-HadGEM2-ES-CLMcom-CCLM4-8-17_v1, and MPI-M-MPI-ESM-LR-KNMI-RACMO22E_v1. In the case of the vegetation period of maize, the models with the best skills are MPI-M-MPI-ESM-LR-KNMI-RACMO22E_v1, CNRM-CM5-IPSL-WRF381P_v2, MPI-M-MPI-ESM-LR-SMHI-RCA4_v1a, MOHC-HadGEM2-ES-IPSL-WRF381P_v1, and MOHC-HadGEM2-ES-KNMI-RACMO22E_v2. Quantifying the errors in climate simulations against observations and elaborating a selection procedure, we developed a consistent ensemble of high time and space resolution climate projections for agricultural use in Romania.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos12080978