Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation

The effect of severe plastic deformation on the structure, mechanical properties, corrosion resistance, and biocompatibility of the WE43 (Mg-Y-Nd-Zr) alloy earmarked for applications as bioresorbable material has been studied. The alloy was deformed by rotary swaging (RS), equal channel angular pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2017-05, Vol.194 (1), p.12004
Hauptverfasser: Dobatkin, S V, Lukyanova, E A, Martynenko, N S, Anisimova, N Yu, Kiselevskiy, M V, Gorshenkov, M V, Yurchenko, N Yu, Raab, G I, Yusupov, V S, Birbilis, N, Salishchev, G A, Estrin, Y Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12004
container_title IOP conference series. Materials Science and Engineering
container_volume 194
creator Dobatkin, S V
Lukyanova, E A
Martynenko, N S
Anisimova, N Yu
Kiselevskiy, M V
Gorshenkov, M V
Yurchenko, N Yu
Raab, G I
Yusupov, V S
Birbilis, N
Salishchev, G A
Estrin, Y Z
description The effect of severe plastic deformation on the structure, mechanical properties, corrosion resistance, and biocompatibility of the WE43 (Mg-Y-Nd-Zr) alloy earmarked for applications as bioresorbable material has been studied. The alloy was deformed by rotary swaging (RS), equal channel angular pressing (ECAP), and multiaxial deformation (MAD). The microstructure examination by transmission electron microscopy showed that all SPD modes lead to the formation of ultrafine-grained structure with a structural element size of 0.5-1 µm and the Mg12Nd phase particles 0.3 µm in size. The microstructure refinement by all three treatments resulted in strengthening of the alloy. ECAP and MAD also raised ductility to up to 12-17%, while RS increased the ultimate tensile strength to up to 415 MPa. The study of the corrosion properties showed that SPD does not affect the electrochemical corrosion of the alloy. Its biocompatibility in vitro was estimated after incubation of the samples with red blood cells (hemolysis study), white blood cells (cell viability assay), and mesenchymal stromal cells (cell proliferation analysis). The biodegradation rate in fetal bovine serum was also evaluated. ECAP and MAD were found to cause some deceleration of biodegradation by slowing down the gas formation in the biological fluid and, compared to MSC, to improve the biocompatibility of the WE43 alloy.
doi_str_mv 10.1088/1757-899X/194/1/012004
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2564599975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564599975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-d81731b0e876bf942c9ecd72429e16556d40c491a1e16747afdcaff658e14eee3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhgdRsFZfQQJuXHRsMs1MJksp9QItLqrgLqTJSU2ZTsYkFfoEvrYplYoguDq5_P934MuyS4JvCK7rIWEly2vOX4eE0yEZYlJgTI-y3uHj-HCuyWl2FsIK44pRinvZ5zx6aJfxbYCU894F61rkIdgQZatggGSr0cI65dadjHZhGxu3yBm0aaKXxraQL71MQ6PZEsmmcduApIngkbbGQIJHtHYawq4U4CO9oK6RIVqFNBjn1wnr2vPsxMgmwMX37Gcvd5Pn8UM-fbp_HN9Oc1UWVcx1TdiILDDUrFoYTgvFQWlW0IIDqcqy0hQryokk6cook0YraUxV1kAoAIz62dWe23n3voEQxcptfJtWiqKsaMk5Z2VKVfuUSkaCByM6b9fSbwXBYidd7HyKnVuRpAsi9tJT8XpftK77Ic_mk18x0WmTosUf0X_4XwuvlIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564599975</pqid></control><display><type>article</type><title>Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Dobatkin, S V ; Lukyanova, E A ; Martynenko, N S ; Anisimova, N Yu ; Kiselevskiy, M V ; Gorshenkov, M V ; Yurchenko, N Yu ; Raab, G I ; Yusupov, V S ; Birbilis, N ; Salishchev, G A ; Estrin, Y Z</creator><creatorcontrib>Dobatkin, S V ; Lukyanova, E A ; Martynenko, N S ; Anisimova, N Yu ; Kiselevskiy, M V ; Gorshenkov, M V ; Yurchenko, N Yu ; Raab, G I ; Yusupov, V S ; Birbilis, N ; Salishchev, G A ; Estrin, Y Z</creatorcontrib><description>The effect of severe plastic deformation on the structure, mechanical properties, corrosion resistance, and biocompatibility of the WE43 (Mg-Y-Nd-Zr) alloy earmarked for applications as bioresorbable material has been studied. The alloy was deformed by rotary swaging (RS), equal channel angular pressing (ECAP), and multiaxial deformation (MAD). The microstructure examination by transmission electron microscopy showed that all SPD modes lead to the formation of ultrafine-grained structure with a structural element size of 0.5-1 µm and the Mg12Nd phase particles 0.3 µm in size. The microstructure refinement by all three treatments resulted in strengthening of the alloy. ECAP and MAD also raised ductility to up to 12-17%, while RS increased the ultimate tensile strength to up to 415 MPa. The study of the corrosion properties showed that SPD does not affect the electrochemical corrosion of the alloy. Its biocompatibility in vitro was estimated after incubation of the samples with red blood cells (hemolysis study), white blood cells (cell viability assay), and mesenchymal stromal cells (cell proliferation analysis). The biodegradation rate in fetal bovine serum was also evaluated. ECAP and MAD were found to cause some deceleration of biodegradation by slowing down the gas formation in the biological fluid and, compared to MSC, to improve the biocompatibility of the WE43 alloy.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/194/1/012004</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Alloys ; Biocompatibility ; Biodegradation ; Biomedical materials ; Corrosion effects ; Corrosion resistance ; Corrosion resistant alloys ; Corrosion tests ; Deceleration ; Deformation effects ; Electrochemical corrosion ; Equal channel angular pressing ; Erythrocytes ; Gas formation ; Leukocytes ; Magnesium base alloys ; Mechanical properties ; Microstructure ; Plastic deformation ; Rotary swaging ; Structural members ; Swaging ; Ultimate tensile strength ; Ultrafines ; Zirconium</subject><ispartof>IOP conference series. Materials Science and Engineering, 2017-05, Vol.194 (1), p.12004</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-d81731b0e876bf942c9ecd72429e16556d40c491a1e16747afdcaff658e14eee3</citedby><cites>FETCH-LOGICAL-c526t-d81731b0e876bf942c9ecd72429e16556d40c491a1e16747afdcaff658e14eee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/194/1/012004/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Dobatkin, S V</creatorcontrib><creatorcontrib>Lukyanova, E A</creatorcontrib><creatorcontrib>Martynenko, N S</creatorcontrib><creatorcontrib>Anisimova, N Yu</creatorcontrib><creatorcontrib>Kiselevskiy, M V</creatorcontrib><creatorcontrib>Gorshenkov, M V</creatorcontrib><creatorcontrib>Yurchenko, N Yu</creatorcontrib><creatorcontrib>Raab, G I</creatorcontrib><creatorcontrib>Yusupov, V S</creatorcontrib><creatorcontrib>Birbilis, N</creatorcontrib><creatorcontrib>Salishchev, G A</creatorcontrib><creatorcontrib>Estrin, Y Z</creatorcontrib><title>Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>The effect of severe plastic deformation on the structure, mechanical properties, corrosion resistance, and biocompatibility of the WE43 (Mg-Y-Nd-Zr) alloy earmarked for applications as bioresorbable material has been studied. The alloy was deformed by rotary swaging (RS), equal channel angular pressing (ECAP), and multiaxial deformation (MAD). The microstructure examination by transmission electron microscopy showed that all SPD modes lead to the formation of ultrafine-grained structure with a structural element size of 0.5-1 µm and the Mg12Nd phase particles 0.3 µm in size. The microstructure refinement by all three treatments resulted in strengthening of the alloy. ECAP and MAD also raised ductility to up to 12-17%, while RS increased the ultimate tensile strength to up to 415 MPa. The study of the corrosion properties showed that SPD does not affect the electrochemical corrosion of the alloy. Its biocompatibility in vitro was estimated after incubation of the samples with red blood cells (hemolysis study), white blood cells (cell viability assay), and mesenchymal stromal cells (cell proliferation analysis). The biodegradation rate in fetal bovine serum was also evaluated. ECAP and MAD were found to cause some deceleration of biodegradation by slowing down the gas formation in the biological fluid and, compared to MSC, to improve the biocompatibility of the WE43 alloy.</description><subject>Alloys</subject><subject>Biocompatibility</subject><subject>Biodegradation</subject><subject>Biomedical materials</subject><subject>Corrosion effects</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Corrosion tests</subject><subject>Deceleration</subject><subject>Deformation effects</subject><subject>Electrochemical corrosion</subject><subject>Equal channel angular pressing</subject><subject>Erythrocytes</subject><subject>Gas formation</subject><subject>Leukocytes</subject><subject>Magnesium base alloys</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Plastic deformation</subject><subject>Rotary swaging</subject><subject>Structural members</subject><subject>Swaging</subject><subject>Ultimate tensile strength</subject><subject>Ultrafines</subject><subject>Zirconium</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkMtKAzEUhgdRsFZfQQJuXHRsMs1MJksp9QItLqrgLqTJSU2ZTsYkFfoEvrYplYoguDq5_P934MuyS4JvCK7rIWEly2vOX4eE0yEZYlJgTI-y3uHj-HCuyWl2FsIK44pRinvZ5zx6aJfxbYCU894F61rkIdgQZatggGSr0cI65dadjHZhGxu3yBm0aaKXxraQL71MQ6PZEsmmcduApIngkbbGQIJHtHYawq4U4CO9oK6RIVqFNBjn1wnr2vPsxMgmwMX37Gcvd5Pn8UM-fbp_HN9Oc1UWVcx1TdiILDDUrFoYTgvFQWlW0IIDqcqy0hQryokk6cook0YraUxV1kAoAIz62dWe23n3voEQxcptfJtWiqKsaMk5Z2VKVfuUSkaCByM6b9fSbwXBYidd7HyKnVuRpAsi9tJT8XpftK77Ic_mk18x0WmTosUf0X_4XwuvlIw</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Dobatkin, S V</creator><creator>Lukyanova, E A</creator><creator>Martynenko, N S</creator><creator>Anisimova, N Yu</creator><creator>Kiselevskiy, M V</creator><creator>Gorshenkov, M V</creator><creator>Yurchenko, N Yu</creator><creator>Raab, G I</creator><creator>Yusupov, V S</creator><creator>Birbilis, N</creator><creator>Salishchev, G A</creator><creator>Estrin, Y Z</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170501</creationdate><title>Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation</title><author>Dobatkin, S V ; Lukyanova, E A ; Martynenko, N S ; Anisimova, N Yu ; Kiselevskiy, M V ; Gorshenkov, M V ; Yurchenko, N Yu ; Raab, G I ; Yusupov, V S ; Birbilis, N ; Salishchev, G A ; Estrin, Y Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-d81731b0e876bf942c9ecd72429e16556d40c491a1e16747afdcaff658e14eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Biocompatibility</topic><topic>Biodegradation</topic><topic>Biomedical materials</topic><topic>Corrosion effects</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Corrosion tests</topic><topic>Deceleration</topic><topic>Deformation effects</topic><topic>Electrochemical corrosion</topic><topic>Equal channel angular pressing</topic><topic>Erythrocytes</topic><topic>Gas formation</topic><topic>Leukocytes</topic><topic>Magnesium base alloys</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Plastic deformation</topic><topic>Rotary swaging</topic><topic>Structural members</topic><topic>Swaging</topic><topic>Ultimate tensile strength</topic><topic>Ultrafines</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobatkin, S V</creatorcontrib><creatorcontrib>Lukyanova, E A</creatorcontrib><creatorcontrib>Martynenko, N S</creatorcontrib><creatorcontrib>Anisimova, N Yu</creatorcontrib><creatorcontrib>Kiselevskiy, M V</creatorcontrib><creatorcontrib>Gorshenkov, M V</creatorcontrib><creatorcontrib>Yurchenko, N Yu</creatorcontrib><creatorcontrib>Raab, G I</creatorcontrib><creatorcontrib>Yusupov, V S</creatorcontrib><creatorcontrib>Birbilis, N</creatorcontrib><creatorcontrib>Salishchev, G A</creatorcontrib><creatorcontrib>Estrin, Y Z</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobatkin, S V</au><au>Lukyanova, E A</au><au>Martynenko, N S</au><au>Anisimova, N Yu</au><au>Kiselevskiy, M V</au><au>Gorshenkov, M V</au><au>Yurchenko, N Yu</au><au>Raab, G I</au><au>Yusupov, V S</au><au>Birbilis, N</au><au>Salishchev, G A</au><au>Estrin, Y Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>194</volume><issue>1</issue><spage>12004</spage><pages>12004-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The effect of severe plastic deformation on the structure, mechanical properties, corrosion resistance, and biocompatibility of the WE43 (Mg-Y-Nd-Zr) alloy earmarked for applications as bioresorbable material has been studied. The alloy was deformed by rotary swaging (RS), equal channel angular pressing (ECAP), and multiaxial deformation (MAD). The microstructure examination by transmission electron microscopy showed that all SPD modes lead to the formation of ultrafine-grained structure with a structural element size of 0.5-1 µm and the Mg12Nd phase particles 0.3 µm in size. The microstructure refinement by all three treatments resulted in strengthening of the alloy. ECAP and MAD also raised ductility to up to 12-17%, while RS increased the ultimate tensile strength to up to 415 MPa. The study of the corrosion properties showed that SPD does not affect the electrochemical corrosion of the alloy. Its biocompatibility in vitro was estimated after incubation of the samples with red blood cells (hemolysis study), white blood cells (cell viability assay), and mesenchymal stromal cells (cell proliferation analysis). The biodegradation rate in fetal bovine serum was also evaluated. ECAP and MAD were found to cause some deceleration of biodegradation by slowing down the gas formation in the biological fluid and, compared to MSC, to improve the biocompatibility of the WE43 alloy.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/194/1/012004</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2017-05, Vol.194 (1), p.12004
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2564599975
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Alloys
Biocompatibility
Biodegradation
Biomedical materials
Corrosion effects
Corrosion resistance
Corrosion resistant alloys
Corrosion tests
Deceleration
Deformation effects
Electrochemical corrosion
Equal channel angular pressing
Erythrocytes
Gas formation
Leukocytes
Magnesium base alloys
Mechanical properties
Microstructure
Plastic deformation
Rotary swaging
Structural members
Swaging
Ultimate tensile strength
Ultrafines
Zirconium
title Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strength,%20corrosion%20resistance,%20and%20biocompatibility%20of%20ultrafine-grained%20Mg%20alloys%20after%20different%20modes%20of%20severe%20plastic%20deformation&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Dobatkin,%20S%20V&rft.date=2017-05-01&rft.volume=194&rft.issue=1&rft.spage=12004&rft.pages=12004-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/194/1/012004&rft_dat=%3Cproquest_iop_j%3E2564599975%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564599975&rft_id=info:pmid/&rfr_iscdi=true