Estimation of coefficient of rolling friction by the evolvent pendulum method

The paper presents a method for finding the coefficient of rolling friction using an evolvent pendulum. The pendulum consists in a fixed cylindrical body and a mobile body presenting a plane surface in contact with a cylindrical surface. The mobile body is placed over the fixed one in an equilibrium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2017-05, Vol.200 (1), p.12005
Hauptverfasser: Alaci, S, Ciornei, F C, Ciogole, A, Ciornei, M C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12005
container_title IOP conference series. Materials Science and Engineering
container_volume 200
creator Alaci, S
Ciornei, F C
Ciogole, A
Ciornei, M C
description The paper presents a method for finding the coefficient of rolling friction using an evolvent pendulum. The pendulum consists in a fixed cylindrical body and a mobile body presenting a plane surface in contact with a cylindrical surface. The mobile body is placed over the fixed one in an equilibrium state; after applying a small impulse, the mobile body oscillates. The motion of the body is video recorded and afterwards the movie is analyzed by frames and the decrease with time of angular amplitude of the pendulum is found. The equation of motion is established for oscillations of the mobile body. The equation of motion, differential nonlinear, is integrated by Runge-Kutta method. Imposing the same damping both to model's solution and to theoretical model, the value of coefficient of rolling friction is obtained. The last part of the paper presents results for actual pairs of materials. The main advantage of the method is the fact that the dimensions of contact regions are small, of order a few millimeters, and thus is substantially reduced the possibility of variation of mechanical characteristic for the two surfaces.
doi_str_mv 10.1088/1757-899X/200/1/012005
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2564579743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564579743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-d2e64f651f87d5cb38978ddb5110ad96aa09af0b309d52c047ed6a8d5acc3e103</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFb_ggS8eImZTbIfOUqpH9DiQQVvy2Y_bEqSjZuk0H9vYqQiCJ5mhn3mHfZB6BLDDQbOI8wIC3mWvUUxQIQjwEMlR2h2eDg-9ByforO23QJQlqYwQ-tl2xWV7ApXB84GyhlrC1WYuhtH78qyqN8D6wv1heT7oNuYwOxcuRuZxtS6L_sqqEy3cfocnVhZtubiu87R693yZfEQrp7uHxe3q1ClwLpQx4amlhJsOdNE5QnPGNc6JxiD1BmVEjJpIU8g0yRWkDKjqeSaSKUSgyGZo6spt_HuozdtJ7au9_VwUsSEpoRlLE0Gik6U8q5tvbGi8cNf_V5gEKM6MVoRoyExKBNYTOqGxetpsXDNT_L6efkLE422Axr_gf6T_wl3vH6C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564579743</pqid></control><display><type>article</type><title>Estimation of coefficient of rolling friction by the evolvent pendulum method</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Alaci, S ; Ciornei, F C ; Ciogole, A ; Ciornei, M C</creator><creatorcontrib>Alaci, S ; Ciornei, F C ; Ciogole, A ; Ciornei, M C</creatorcontrib><description>The paper presents a method for finding the coefficient of rolling friction using an evolvent pendulum. The pendulum consists in a fixed cylindrical body and a mobile body presenting a plane surface in contact with a cylindrical surface. The mobile body is placed over the fixed one in an equilibrium state; after applying a small impulse, the mobile body oscillates. The motion of the body is video recorded and afterwards the movie is analyzed by frames and the decrease with time of angular amplitude of the pendulum is found. The equation of motion is established for oscillations of the mobile body. The equation of motion, differential nonlinear, is integrated by Runge-Kutta method. Imposing the same damping both to model's solution and to theoretical model, the value of coefficient of rolling friction is obtained. The last part of the paper presents results for actual pairs of materials. The main advantage of the method is the fact that the dimensions of contact regions are small, of order a few millimeters, and thus is substantially reduced the possibility of variation of mechanical characteristic for the two surfaces.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/200/1/012005</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Coefficient of friction ; Cylindrical bodies ; Damping ; Differential equations ; Equations of motion ; Friction ; Mechanical properties ; Pendulums ; Rolling resistance ; Runge-Kutta method</subject><ispartof>IOP conference series. Materials Science and Engineering, 2017-05, Vol.200 (1), p.12005</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-d2e64f651f87d5cb38978ddb5110ad96aa09af0b309d52c047ed6a8d5acc3e103</citedby><cites>FETCH-LOGICAL-c407t-d2e64f651f87d5cb38978ddb5110ad96aa09af0b309d52c047ed6a8d5acc3e103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/200/1/012005/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27922,27923,38866,38888,53838,53865</link.rule.ids></links><search><creatorcontrib>Alaci, S</creatorcontrib><creatorcontrib>Ciornei, F C</creatorcontrib><creatorcontrib>Ciogole, A</creatorcontrib><creatorcontrib>Ciornei, M C</creatorcontrib><title>Estimation of coefficient of rolling friction by the evolvent pendulum method</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>The paper presents a method for finding the coefficient of rolling friction using an evolvent pendulum. The pendulum consists in a fixed cylindrical body and a mobile body presenting a plane surface in contact with a cylindrical surface. The mobile body is placed over the fixed one in an equilibrium state; after applying a small impulse, the mobile body oscillates. The motion of the body is video recorded and afterwards the movie is analyzed by frames and the decrease with time of angular amplitude of the pendulum is found. The equation of motion is established for oscillations of the mobile body. The equation of motion, differential nonlinear, is integrated by Runge-Kutta method. Imposing the same damping both to model's solution and to theoretical model, the value of coefficient of rolling friction is obtained. The last part of the paper presents results for actual pairs of materials. The main advantage of the method is the fact that the dimensions of contact regions are small, of order a few millimeters, and thus is substantially reduced the possibility of variation of mechanical characteristic for the two surfaces.</description><subject>Coefficient of friction</subject><subject>Cylindrical bodies</subject><subject>Damping</subject><subject>Differential equations</subject><subject>Equations of motion</subject><subject>Friction</subject><subject>Mechanical properties</subject><subject>Pendulums</subject><subject>Rolling resistance</subject><subject>Runge-Kutta method</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1Lw0AQhhdRsFb_ggS8eImZTbIfOUqpH9DiQQVvy2Y_bEqSjZuk0H9vYqQiCJ5mhn3mHfZB6BLDDQbOI8wIC3mWvUUxQIQjwEMlR2h2eDg-9ByforO23QJQlqYwQ-tl2xWV7ApXB84GyhlrC1WYuhtH78qyqN8D6wv1heT7oNuYwOxcuRuZxtS6L_sqqEy3cfocnVhZtubiu87R693yZfEQrp7uHxe3q1ClwLpQx4amlhJsOdNE5QnPGNc6JxiD1BmVEjJpIU8g0yRWkDKjqeSaSKUSgyGZo6spt_HuozdtJ7au9_VwUsSEpoRlLE0Gik6U8q5tvbGi8cNf_V5gEKM6MVoRoyExKBNYTOqGxetpsXDNT_L6efkLE422Axr_gf6T_wl3vH6C</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Alaci, S</creator><creator>Ciornei, F C</creator><creator>Ciogole, A</creator><creator>Ciornei, M C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170501</creationdate><title>Estimation of coefficient of rolling friction by the evolvent pendulum method</title><author>Alaci, S ; Ciornei, F C ; Ciogole, A ; Ciornei, M C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-d2e64f651f87d5cb38978ddb5110ad96aa09af0b309d52c047ed6a8d5acc3e103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coefficient of friction</topic><topic>Cylindrical bodies</topic><topic>Damping</topic><topic>Differential equations</topic><topic>Equations of motion</topic><topic>Friction</topic><topic>Mechanical properties</topic><topic>Pendulums</topic><topic>Rolling resistance</topic><topic>Runge-Kutta method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alaci, S</creatorcontrib><creatorcontrib>Ciornei, F C</creatorcontrib><creatorcontrib>Ciogole, A</creatorcontrib><creatorcontrib>Ciornei, M C</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alaci, S</au><au>Ciornei, F C</au><au>Ciogole, A</au><au>Ciornei, M C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of coefficient of rolling friction by the evolvent pendulum method</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>200</volume><issue>1</issue><spage>12005</spage><pages>12005-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The paper presents a method for finding the coefficient of rolling friction using an evolvent pendulum. The pendulum consists in a fixed cylindrical body and a mobile body presenting a plane surface in contact with a cylindrical surface. The mobile body is placed over the fixed one in an equilibrium state; after applying a small impulse, the mobile body oscillates. The motion of the body is video recorded and afterwards the movie is analyzed by frames and the decrease with time of angular amplitude of the pendulum is found. The equation of motion is established for oscillations of the mobile body. The equation of motion, differential nonlinear, is integrated by Runge-Kutta method. Imposing the same damping both to model's solution and to theoretical model, the value of coefficient of rolling friction is obtained. The last part of the paper presents results for actual pairs of materials. The main advantage of the method is the fact that the dimensions of contact regions are small, of order a few millimeters, and thus is substantially reduced the possibility of variation of mechanical characteristic for the two surfaces.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/200/1/012005</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2017-05, Vol.200 (1), p.12005
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2564579743
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Coefficient of friction
Cylindrical bodies
Damping
Differential equations
Equations of motion
Friction
Mechanical properties
Pendulums
Rolling resistance
Runge-Kutta method
title Estimation of coefficient of rolling friction by the evolvent pendulum method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20coefficient%20of%20rolling%20friction%20by%20the%20evolvent%20pendulum%20method&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Alaci,%20S&rft.date=2017-05-01&rft.volume=200&rft.issue=1&rft.spage=12005&rft.pages=12005-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/200/1/012005&rft_dat=%3Cproquest_iop_j%3E2564579743%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564579743&rft_id=info:pmid/&rfr_iscdi=true