Effect of rolling and annealing temperature on the mechanical properties of CrMnFeCoNi high-entropy alloy
Equiatomic CrMnFeCoNi high-entropy alloy was cold- and hot-rolled (room temperature and 700 °C) to a thickness reduction of 90%. Subsequently, the rolled samples were annealed for 1 h at temperatures between 450 °C and 800 °C. The microstructure and texture of as-rolled and annealed samples were stu...
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2021-09, Vol.270, p.124830, Article 124830 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 124830 |
container_title | Materials chemistry and physics |
container_volume | 270 |
creator | Schmidt, Sebastian Sathiaraj, G. Dan Kumar, S. Satheesh Sulkowski, Bartosz Suwas, Satyam Jaschinski, Jörn Pukenas, Aurimas Gu, Bin Skrotzki, Werner |
description | Equiatomic CrMnFeCoNi high-entropy alloy was cold- and hot-rolled (room temperature and 700 °C) to a thickness reduction of 90%. Subsequently, the rolled samples were annealed for 1 h at temperatures between 450 °C and 800 °C. The microstructure and texture of as-rolled and annealed samples were studied by scanning electron microscopy coupled with electron backscatter diffraction and energy-dispersive X-ray spectroscopy. The evolution of microstructure and texture has been found to be governed by dislocation slip, recrystallization and annealing twin formation. Moreover, during processing at certain temperatures concurrent precipitation is observed. The mechanical properties of all samples were derived from tensile stress-strain curves determined at room temperature. Based on microstructural analyses the strength of the thermo-mechanically processed samples can be quantitatively explained by a combination of different strengthening mechanisms, such as dislocation, grain boundary and precipitation hardening.
[Display omitted]
•Mechanical properties of CrMnFeCoNi HEA can be extensively tailored by thermo-mechanical processing.•Recovery and partial recrystallization are the most important factors for optimization of strength and ductility.•Precipitation is counterproductive, but plays a subordinate role. |
doi_str_mv | 10.1016/j.matchemphys.2021.124830 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564575682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058421006131</els_id><sourcerecordid>2564575682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-85a37553c380309f4a049e27fc659ea7cf5b6d5ed77476ae6100994945d670d3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEuPjPwRx7kiapGmPqNoAacBl9yik7pqpS0aSIfXfkzEOHDlYlvXar-0HoTtK5pTQ6mE73-lkBtjthynOS1LSOS15zcgZmtFaNgVjtDxHM1IKXhBR80t0FeOWECopZTNkF30PJmHf4-DH0boN1q7L4UD_VClbQ9DpEAB7h9MAeAdm0M4aPeJ98FlNFuLRoQ2vbgmtf7N4sJuhAJeyPmE9jn66QRe9HiPc_uZrtF4u1u1zsXp_emkfV4XhVKSiFppJIZhhNWGk6bkmvIFS9qYSDWhpevFRdQI6KbmsNFSUkKbhDRddJUnHrtH9yTaf9nmAmNTWH4LLG1UpKi6kqOoydzWnLhN8jAF6tQ92p8OkKFFHsGqr_oBVR7DqBDbPtqdZyF98WQgqGgvOQGdDRqk6b__h8g02e4fz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564575682</pqid></control><display><type>article</type><title>Effect of rolling and annealing temperature on the mechanical properties of CrMnFeCoNi high-entropy alloy</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Schmidt, Sebastian ; Sathiaraj, G. Dan ; Kumar, S. Satheesh ; Sulkowski, Bartosz ; Suwas, Satyam ; Jaschinski, Jörn ; Pukenas, Aurimas ; Gu, Bin ; Skrotzki, Werner</creator><creatorcontrib>Schmidt, Sebastian ; Sathiaraj, G. Dan ; Kumar, S. Satheesh ; Sulkowski, Bartosz ; Suwas, Satyam ; Jaschinski, Jörn ; Pukenas, Aurimas ; Gu, Bin ; Skrotzki, Werner</creatorcontrib><description>Equiatomic CrMnFeCoNi high-entropy alloy was cold- and hot-rolled (room temperature and 700 °C) to a thickness reduction of 90%. Subsequently, the rolled samples were annealed for 1 h at temperatures between 450 °C and 800 °C. The microstructure and texture of as-rolled and annealed samples were studied by scanning electron microscopy coupled with electron backscatter diffraction and energy-dispersive X-ray spectroscopy. The evolution of microstructure and texture has been found to be governed by dislocation slip, recrystallization and annealing twin formation. Moreover, during processing at certain temperatures concurrent precipitation is observed. The mechanical properties of all samples were derived from tensile stress-strain curves determined at room temperature. Based on microstructural analyses the strength of the thermo-mechanically processed samples can be quantitatively explained by a combination of different strengthening mechanisms, such as dislocation, grain boundary and precipitation hardening.
[Display omitted]
•Mechanical properties of CrMnFeCoNi HEA can be extensively tailored by thermo-mechanical processing.•Recovery and partial recrystallization are the most important factors for optimization of strength and ductility.•Precipitation is counterproductive, but plays a subordinate role.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2021.124830</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Annealing ; Cold rolling ; Electron backscatter diffraction ; Grain boundaries ; High entropy alloys ; High-entropy alloy ; Hot rolling ; Mechanical properties ; Microstructure ; Precipitation hardening ; Recrystallization ; Rolling ; Room temperature ; Strengthening mechanisms ; Stress-strain curves ; Temperature ; Tensile stress ; Texture</subject><ispartof>Materials chemistry and physics, 2021-09, Vol.270, p.124830, Article 124830</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-85a37553c380309f4a049e27fc659ea7cf5b6d5ed77476ae6100994945d670d3</citedby><cites>FETCH-LOGICAL-c415t-85a37553c380309f4a049e27fc659ea7cf5b6d5ed77476ae6100994945d670d3</cites><orcidid>0000-0003-0134-7631 ; 0000-0002-7834-8926 ; 0000-0002-3772-4403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchemphys.2021.124830$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Schmidt, Sebastian</creatorcontrib><creatorcontrib>Sathiaraj, G. Dan</creatorcontrib><creatorcontrib>Kumar, S. Satheesh</creatorcontrib><creatorcontrib>Sulkowski, Bartosz</creatorcontrib><creatorcontrib>Suwas, Satyam</creatorcontrib><creatorcontrib>Jaschinski, Jörn</creatorcontrib><creatorcontrib>Pukenas, Aurimas</creatorcontrib><creatorcontrib>Gu, Bin</creatorcontrib><creatorcontrib>Skrotzki, Werner</creatorcontrib><title>Effect of rolling and annealing temperature on the mechanical properties of CrMnFeCoNi high-entropy alloy</title><title>Materials chemistry and physics</title><description>Equiatomic CrMnFeCoNi high-entropy alloy was cold- and hot-rolled (room temperature and 700 °C) to a thickness reduction of 90%. Subsequently, the rolled samples were annealed for 1 h at temperatures between 450 °C and 800 °C. The microstructure and texture of as-rolled and annealed samples were studied by scanning electron microscopy coupled with electron backscatter diffraction and energy-dispersive X-ray spectroscopy. The evolution of microstructure and texture has been found to be governed by dislocation slip, recrystallization and annealing twin formation. Moreover, during processing at certain temperatures concurrent precipitation is observed. The mechanical properties of all samples were derived from tensile stress-strain curves determined at room temperature. Based on microstructural analyses the strength of the thermo-mechanically processed samples can be quantitatively explained by a combination of different strengthening mechanisms, such as dislocation, grain boundary and precipitation hardening.
[Display omitted]
•Mechanical properties of CrMnFeCoNi HEA can be extensively tailored by thermo-mechanical processing.•Recovery and partial recrystallization are the most important factors for optimization of strength and ductility.•Precipitation is counterproductive, but plays a subordinate role.</description><subject>Annealing</subject><subject>Cold rolling</subject><subject>Electron backscatter diffraction</subject><subject>Grain boundaries</subject><subject>High entropy alloys</subject><subject>High-entropy alloy</subject><subject>Hot rolling</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Precipitation hardening</subject><subject>Recrystallization</subject><subject>Rolling</subject><subject>Room temperature</subject><subject>Strengthening mechanisms</subject><subject>Stress-strain curves</subject><subject>Temperature</subject><subject>Tensile stress</subject><subject>Texture</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEuPjPwRx7kiapGmPqNoAacBl9yik7pqpS0aSIfXfkzEOHDlYlvXar-0HoTtK5pTQ6mE73-lkBtjthynOS1LSOS15zcgZmtFaNgVjtDxHM1IKXhBR80t0FeOWECopZTNkF30PJmHf4-DH0boN1q7L4UD_VClbQ9DpEAB7h9MAeAdm0M4aPeJ98FlNFuLRoQ2vbgmtf7N4sJuhAJeyPmE9jn66QRe9HiPc_uZrtF4u1u1zsXp_emkfV4XhVKSiFppJIZhhNWGk6bkmvIFS9qYSDWhpevFRdQI6KbmsNFSUkKbhDRddJUnHrtH9yTaf9nmAmNTWH4LLG1UpKi6kqOoydzWnLhN8jAF6tQ92p8OkKFFHsGqr_oBVR7DqBDbPtqdZyF98WQgqGgvOQGdDRqk6b__h8g02e4fz</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Schmidt, Sebastian</creator><creator>Sathiaraj, G. Dan</creator><creator>Kumar, S. Satheesh</creator><creator>Sulkowski, Bartosz</creator><creator>Suwas, Satyam</creator><creator>Jaschinski, Jörn</creator><creator>Pukenas, Aurimas</creator><creator>Gu, Bin</creator><creator>Skrotzki, Werner</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0134-7631</orcidid><orcidid>https://orcid.org/0000-0002-7834-8926</orcidid><orcidid>https://orcid.org/0000-0002-3772-4403</orcidid></search><sort><creationdate>20210915</creationdate><title>Effect of rolling and annealing temperature on the mechanical properties of CrMnFeCoNi high-entropy alloy</title><author>Schmidt, Sebastian ; Sathiaraj, G. Dan ; Kumar, S. Satheesh ; Sulkowski, Bartosz ; Suwas, Satyam ; Jaschinski, Jörn ; Pukenas, Aurimas ; Gu, Bin ; Skrotzki, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-85a37553c380309f4a049e27fc659ea7cf5b6d5ed77476ae6100994945d670d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annealing</topic><topic>Cold rolling</topic><topic>Electron backscatter diffraction</topic><topic>Grain boundaries</topic><topic>High entropy alloys</topic><topic>High-entropy alloy</topic><topic>Hot rolling</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Precipitation hardening</topic><topic>Recrystallization</topic><topic>Rolling</topic><topic>Room temperature</topic><topic>Strengthening mechanisms</topic><topic>Stress-strain curves</topic><topic>Temperature</topic><topic>Tensile stress</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Sebastian</creatorcontrib><creatorcontrib>Sathiaraj, G. Dan</creatorcontrib><creatorcontrib>Kumar, S. Satheesh</creatorcontrib><creatorcontrib>Sulkowski, Bartosz</creatorcontrib><creatorcontrib>Suwas, Satyam</creatorcontrib><creatorcontrib>Jaschinski, Jörn</creatorcontrib><creatorcontrib>Pukenas, Aurimas</creatorcontrib><creatorcontrib>Gu, Bin</creatorcontrib><creatorcontrib>Skrotzki, Werner</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Sebastian</au><au>Sathiaraj, G. Dan</au><au>Kumar, S. Satheesh</au><au>Sulkowski, Bartosz</au><au>Suwas, Satyam</au><au>Jaschinski, Jörn</au><au>Pukenas, Aurimas</au><au>Gu, Bin</au><au>Skrotzki, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of rolling and annealing temperature on the mechanical properties of CrMnFeCoNi high-entropy alloy</atitle><jtitle>Materials chemistry and physics</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>270</volume><spage>124830</spage><pages>124830-</pages><artnum>124830</artnum><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>Equiatomic CrMnFeCoNi high-entropy alloy was cold- and hot-rolled (room temperature and 700 °C) to a thickness reduction of 90%. Subsequently, the rolled samples were annealed for 1 h at temperatures between 450 °C and 800 °C. The microstructure and texture of as-rolled and annealed samples were studied by scanning electron microscopy coupled with electron backscatter diffraction and energy-dispersive X-ray spectroscopy. The evolution of microstructure and texture has been found to be governed by dislocation slip, recrystallization and annealing twin formation. Moreover, during processing at certain temperatures concurrent precipitation is observed. The mechanical properties of all samples were derived from tensile stress-strain curves determined at room temperature. Based on microstructural analyses the strength of the thermo-mechanically processed samples can be quantitatively explained by a combination of different strengthening mechanisms, such as dislocation, grain boundary and precipitation hardening.
[Display omitted]
•Mechanical properties of CrMnFeCoNi HEA can be extensively tailored by thermo-mechanical processing.•Recovery and partial recrystallization are the most important factors for optimization of strength and ductility.•Precipitation is counterproductive, but plays a subordinate role.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2021.124830</doi><orcidid>https://orcid.org/0000-0003-0134-7631</orcidid><orcidid>https://orcid.org/0000-0002-7834-8926</orcidid><orcidid>https://orcid.org/0000-0002-3772-4403</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-0584 |
ispartof | Materials chemistry and physics, 2021-09, Vol.270, p.124830, Article 124830 |
issn | 0254-0584 1879-3312 |
language | eng |
recordid | cdi_proquest_journals_2564575682 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Annealing Cold rolling Electron backscatter diffraction Grain boundaries High entropy alloys High-entropy alloy Hot rolling Mechanical properties Microstructure Precipitation hardening Recrystallization Rolling Room temperature Strengthening mechanisms Stress-strain curves Temperature Tensile stress Texture |
title | Effect of rolling and annealing temperature on the mechanical properties of CrMnFeCoNi high-entropy alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20rolling%20and%20annealing%20temperature%20on%20the%20mechanical%20properties%20of%20CrMnFeCoNi%20high-entropy%20alloy&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Schmidt,%20Sebastian&rft.date=2021-09-15&rft.volume=270&rft.spage=124830&rft.pages=124830-&rft.artnum=124830&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2021.124830&rft_dat=%3Cproquest_cross%3E2564575682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564575682&rft_id=info:pmid/&rft_els_id=S0254058421006131&rfr_iscdi=true |