Dynamic monitoring of glycine crystallisation with low power ultrasound reflection spectroscopy

•A improved ultrasound technique is shown to accurately monitor crystallisation.•The optical cloud point can be determined using ultrasound with high accuracy.•Results agree closely with standard optical turbidity.•The ultrasound technique may be detecting scattering bodies in the metastable zone.•T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering research & design 2021-06, Vol.170, p.213-223
Hauptverfasser: Morris, Liam, Simone, Elena, Glover, Zachary J., Powell, Hugh, Marty-Terrade, Stéphanie, Francis, Mathew, Povey, Megan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue
container_start_page 213
container_title Chemical engineering research & design
container_volume 170
creator Morris, Liam
Simone, Elena
Glover, Zachary J.
Powell, Hugh
Marty-Terrade, Stéphanie
Francis, Mathew
Povey, Megan J.
description •A improved ultrasound technique is shown to accurately monitor crystallisation.•The optical cloud point can be determined using ultrasound with high accuracy.•Results agree closely with standard optical turbidity.•The ultrasound technique may be detecting scattering bodies in the metastable zone.•The technique may give more information than optical techniques and be used to study structures. Crystallisation processes are ubiquitous in the food and pharmaceutical industries and the development of process analytical technologies (PAT) for on-line, in situ monitoring is essential to ensure process efficiency and to optimise product quality. Current PAT, many of which are based on electromagnetic waves, have a range of limitations including an inability to accurately measure opaque solutions. Low power (
doi_str_mv 10.1016/j.cherd.2021.04.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564571521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026387622100157X</els_id><sourcerecordid>2564571521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-87a89152feab8d9ff8f1c3e22775f98979b088b2170265f4bacdba492e92b0983</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIXcLHEOcGPJLYPHFB5SpW4wNlyHLt1lMbBTqjy97gtZ0670s7MzgwAtxjlGOHqvs311oQmJ4jgHBU5QvQMLDArioyWFT0HC0QqmnFWkUtwFWOLEEpXvgDyae7Vzmm4870bfXD9BnoLN92sXW-gDnMcVde5qEbne7h34xZ2fg8HvzcBTt0YVPRT38BgbGf0ERSHtAQftR_ma3BhVRfNzd9cgq-X58_VW7b-eH1fPa4zTVk1JmeKC1wSa1TNG2Ett1hTQwhjpRVcMFEjzmuCWQpS2qJWuqlVIYgRpEaC0yW4O-kOwX9PJo6y9VPo00tJyqooWRLHCUVPKJ3sxWRZDsHtVJglRvLQpGzlsUl5aFKiQqYmE-vhxDIpwI8zQUbtTK9N40JKKhvv_uX_As23f4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564571521</pqid></control><display><type>article</type><title>Dynamic monitoring of glycine crystallisation with low power ultrasound reflection spectroscopy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Morris, Liam ; Simone, Elena ; Glover, Zachary J. ; Powell, Hugh ; Marty-Terrade, Stéphanie ; Francis, Mathew ; Povey, Megan J.</creator><creatorcontrib>Morris, Liam ; Simone, Elena ; Glover, Zachary J. ; Powell, Hugh ; Marty-Terrade, Stéphanie ; Francis, Mathew ; Povey, Megan J.</creatorcontrib><description>•A improved ultrasound technique is shown to accurately monitor crystallisation.•The optical cloud point can be determined using ultrasound with high accuracy.•Results agree closely with standard optical turbidity.•The ultrasound technique may be detecting scattering bodies in the metastable zone.•The technique may give more information than optical techniques and be used to study structures. Crystallisation processes are ubiquitous in the food and pharmaceutical industries and the development of process analytical technologies (PAT) for on-line, in situ monitoring is essential to ensure process efficiency and to optimise product quality. Current PAT, many of which are based on electromagnetic waves, have a range of limitations including an inability to accurately measure opaque solutions. Low power (&lt;10Wm−2) pulsed acoustic techniques, such as ultrasound reflectance and velocimetry, have the benefit of being non-material altering, affordable, non-invasive and can study opaque systems without any dilution. Here, we present an improved in-situ ultrasound technique which is corroborated with optical turbidity in the measurement of the MSZW of glycine in water with good agreement. A Mann–Whitney U test was conducted, and no significant difference was found in the measurement of the MSZW between the two techniques. Density data were used with velocity measurements from the improved technique to calculate adiabatic compressibility of glycine solutions, which is an important and useful physical property when studying phase transitions. A frequency space analysis has been performed on the acoustic time domain measurements, and the data suggest the presence of scattering bodies in the metastable zone.</description><identifier>ISSN: 0263-8762</identifier><identifier>EISSN: 1744-3563</identifier><identifier>DOI: 10.1016/j.cherd.2021.04.003</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Acoustic spectroscopy ; Acoustics ; Compressibility ; Crystallisation ; Crystallization ; Dilution ; Electromagnetic radiation ; Frequency analysis ; Glycine ; In-situ monitoring ; Measurement ; Monitoring ; Monitoring systems ; MSZW ; Phase transitions ; Studies ; Turbidity ; Ultrasonic imaging ; Ultrasonic methods ; Ultrasonic testing ; Ultrasound ; Velocimetry</subject><ispartof>Chemical engineering research &amp; design, 2021-06, Vol.170, p.213-223</ispartof><rights>2021</rights><rights>Copyright Elsevier Science Ltd. Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-87a89152feab8d9ff8f1c3e22775f98979b088b2170265f4bacdba492e92b0983</citedby><cites>FETCH-LOGICAL-c376t-87a89152feab8d9ff8f1c3e22775f98979b088b2170265f4bacdba492e92b0983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cherd.2021.04.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Morris, Liam</creatorcontrib><creatorcontrib>Simone, Elena</creatorcontrib><creatorcontrib>Glover, Zachary J.</creatorcontrib><creatorcontrib>Powell, Hugh</creatorcontrib><creatorcontrib>Marty-Terrade, Stéphanie</creatorcontrib><creatorcontrib>Francis, Mathew</creatorcontrib><creatorcontrib>Povey, Megan J.</creatorcontrib><title>Dynamic monitoring of glycine crystallisation with low power ultrasound reflection spectroscopy</title><title>Chemical engineering research &amp; design</title><description>•A improved ultrasound technique is shown to accurately monitor crystallisation.•The optical cloud point can be determined using ultrasound with high accuracy.•Results agree closely with standard optical turbidity.•The ultrasound technique may be detecting scattering bodies in the metastable zone.•The technique may give more information than optical techniques and be used to study structures. Crystallisation processes are ubiquitous in the food and pharmaceutical industries and the development of process analytical technologies (PAT) for on-line, in situ monitoring is essential to ensure process efficiency and to optimise product quality. Current PAT, many of which are based on electromagnetic waves, have a range of limitations including an inability to accurately measure opaque solutions. Low power (&lt;10Wm−2) pulsed acoustic techniques, such as ultrasound reflectance and velocimetry, have the benefit of being non-material altering, affordable, non-invasive and can study opaque systems without any dilution. Here, we present an improved in-situ ultrasound technique which is corroborated with optical turbidity in the measurement of the MSZW of glycine in water with good agreement. A Mann–Whitney U test was conducted, and no significant difference was found in the measurement of the MSZW between the two techniques. Density data were used with velocity measurements from the improved technique to calculate adiabatic compressibility of glycine solutions, which is an important and useful physical property when studying phase transitions. A frequency space analysis has been performed on the acoustic time domain measurements, and the data suggest the presence of scattering bodies in the metastable zone.</description><subject>Acoustic spectroscopy</subject><subject>Acoustics</subject><subject>Compressibility</subject><subject>Crystallisation</subject><subject>Crystallization</subject><subject>Dilution</subject><subject>Electromagnetic radiation</subject><subject>Frequency analysis</subject><subject>Glycine</subject><subject>In-situ monitoring</subject><subject>Measurement</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>MSZW</subject><subject>Phase transitions</subject><subject>Studies</subject><subject>Turbidity</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic methods</subject><subject>Ultrasonic testing</subject><subject>Ultrasound</subject><subject>Velocimetry</subject><issn>0263-8762</issn><issn>1744-3563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIXcLHEOcGPJLYPHFB5SpW4wNlyHLt1lMbBTqjy97gtZ0670s7MzgwAtxjlGOHqvs311oQmJ4jgHBU5QvQMLDArioyWFT0HC0QqmnFWkUtwFWOLEEpXvgDyae7Vzmm4870bfXD9BnoLN92sXW-gDnMcVde5qEbne7h34xZ2fg8HvzcBTt0YVPRT38BgbGf0ERSHtAQftR_ma3BhVRfNzd9cgq-X58_VW7b-eH1fPa4zTVk1JmeKC1wSa1TNG2Ett1hTQwhjpRVcMFEjzmuCWQpS2qJWuqlVIYgRpEaC0yW4O-kOwX9PJo6y9VPo00tJyqooWRLHCUVPKJ3sxWRZDsHtVJglRvLQpGzlsUl5aFKiQqYmE-vhxDIpwI8zQUbtTK9N40JKKhvv_uX_As23f4U</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Morris, Liam</creator><creator>Simone, Elena</creator><creator>Glover, Zachary J.</creator><creator>Powell, Hugh</creator><creator>Marty-Terrade, Stéphanie</creator><creator>Francis, Mathew</creator><creator>Povey, Megan J.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202106</creationdate><title>Dynamic monitoring of glycine crystallisation with low power ultrasound reflection spectroscopy</title><author>Morris, Liam ; Simone, Elena ; Glover, Zachary J. ; Powell, Hugh ; Marty-Terrade, Stéphanie ; Francis, Mathew ; Povey, Megan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-87a89152feab8d9ff8f1c3e22775f98979b088b2170265f4bacdba492e92b0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic spectroscopy</topic><topic>Acoustics</topic><topic>Compressibility</topic><topic>Crystallisation</topic><topic>Crystallization</topic><topic>Dilution</topic><topic>Electromagnetic radiation</topic><topic>Frequency analysis</topic><topic>Glycine</topic><topic>In-situ monitoring</topic><topic>Measurement</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>MSZW</topic><topic>Phase transitions</topic><topic>Studies</topic><topic>Turbidity</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic methods</topic><topic>Ultrasonic testing</topic><topic>Ultrasound</topic><topic>Velocimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Liam</creatorcontrib><creatorcontrib>Simone, Elena</creatorcontrib><creatorcontrib>Glover, Zachary J.</creatorcontrib><creatorcontrib>Powell, Hugh</creatorcontrib><creatorcontrib>Marty-Terrade, Stéphanie</creatorcontrib><creatorcontrib>Francis, Mathew</creatorcontrib><creatorcontrib>Povey, Megan J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Liam</au><au>Simone, Elena</au><au>Glover, Zachary J.</au><au>Powell, Hugh</au><au>Marty-Terrade, Stéphanie</au><au>Francis, Mathew</au><au>Povey, Megan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic monitoring of glycine crystallisation with low power ultrasound reflection spectroscopy</atitle><jtitle>Chemical engineering research &amp; design</jtitle><date>2021-06</date><risdate>2021</risdate><volume>170</volume><spage>213</spage><epage>223</epage><pages>213-223</pages><issn>0263-8762</issn><eissn>1744-3563</eissn><abstract>•A improved ultrasound technique is shown to accurately monitor crystallisation.•The optical cloud point can be determined using ultrasound with high accuracy.•Results agree closely with standard optical turbidity.•The ultrasound technique may be detecting scattering bodies in the metastable zone.•The technique may give more information than optical techniques and be used to study structures. Crystallisation processes are ubiquitous in the food and pharmaceutical industries and the development of process analytical technologies (PAT) for on-line, in situ monitoring is essential to ensure process efficiency and to optimise product quality. Current PAT, many of which are based on electromagnetic waves, have a range of limitations including an inability to accurately measure opaque solutions. Low power (&lt;10Wm−2) pulsed acoustic techniques, such as ultrasound reflectance and velocimetry, have the benefit of being non-material altering, affordable, non-invasive and can study opaque systems without any dilution. Here, we present an improved in-situ ultrasound technique which is corroborated with optical turbidity in the measurement of the MSZW of glycine in water with good agreement. A Mann–Whitney U test was conducted, and no significant difference was found in the measurement of the MSZW between the two techniques. Density data were used with velocity measurements from the improved technique to calculate adiabatic compressibility of glycine solutions, which is an important and useful physical property when studying phase transitions. A frequency space analysis has been performed on the acoustic time domain measurements, and the data suggest the presence of scattering bodies in the metastable zone.</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cherd.2021.04.003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-8762
ispartof Chemical engineering research & design, 2021-06, Vol.170, p.213-223
issn 0263-8762
1744-3563
language eng
recordid cdi_proquest_journals_2564571521
source Elsevier ScienceDirect Journals Complete
subjects Acoustic spectroscopy
Acoustics
Compressibility
Crystallisation
Crystallization
Dilution
Electromagnetic radiation
Frequency analysis
Glycine
In-situ monitoring
Measurement
Monitoring
Monitoring systems
MSZW
Phase transitions
Studies
Turbidity
Ultrasonic imaging
Ultrasonic methods
Ultrasonic testing
Ultrasound
Velocimetry
title Dynamic monitoring of glycine crystallisation with low power ultrasound reflection spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20monitoring%20of%20glycine%20crystallisation%20with%20low%20power%20ultrasound%20reflection%20spectroscopy&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Morris,%20Liam&rft.date=2021-06&rft.volume=170&rft.spage=213&rft.epage=223&rft.pages=213-223&rft.issn=0263-8762&rft.eissn=1744-3563&rft_id=info:doi/10.1016/j.cherd.2021.04.003&rft_dat=%3Cproquest_cross%3E2564571521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564571521&rft_id=info:pmid/&rft_els_id=S026387622100157X&rfr_iscdi=true