Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach
In this paper, we apply multiple attribute border approximation area comparison approach to multiple attribute group decision-making with bipolar fuzzy numbers (BFNs). We reconsider the notion of BFNs and propose its corresponding operational rules, score and accuracy functions. Further, we introduc...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2021-09, Vol.40 (6), Article 227 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 40 |
creator | Jana, Chiranjibe |
description | In this paper, we apply multiple attribute border approximation area comparison approach to multiple attribute group decision-making with bipolar fuzzy numbers (BFNs). We reconsider the notion of BFNs and propose its corresponding operational rules, score and accuracy functions. Further, we introduce two aggregation operators and develop an MADM approach based on conventional BABAC model with overall BFNs. The proposed technique is valid and accurate for considering the conflicting attributes. We analyse the proposed method by considering a numerical example for the selection of renewable energy power generation project to show the effectiveness of the developed approach. At last, we compare the developed approach with some existing operators to show its efficiency. |
doi_str_mv | 10.1007/s40314-021-01606-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564510677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564510677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-13d6e9311174e3190262cf6fa1e88a4a5e9b9dd810298a070f11178a78f4e4253</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH4mdZal4SUVsYIvlJE6b0sbBdiTar8clSOxYzWh07h3pIHRJ4ZoCyJsggFNBgFECNIec8CM0oQokAQ7sGE0Y44rwHPgpOgthDcAlFWKC3p-HTWz7jcUmRt-WQ7R46d3Q49pWbWhdR7bmo-2WeGvjytW4NMHW2HXYfkXb1Wkv295tjMfNsN_v8PPsdjbHpu-9M9XqHJ00ZhPsxe-corf7u9f5I1m8PDzNZwtScVpEQnmd24JTSqWw6QIsZ1WTN4ZapYwwmS3Koq4VBVYoAxKaA6qMVI2wgmV8iq7G3vT2c7Ah6rUbfJdeapblIqOQS5koNlKVdyF42-jet1vjd5qCPnjUo0edPOofj5qnEB9DIcHd0vq_6n9S398OdPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564510677</pqid></control><display><type>article</type><title>Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach</title><source>SpringerNature Journals</source><creator>Jana, Chiranjibe</creator><creatorcontrib>Jana, Chiranjibe</creatorcontrib><description>In this paper, we apply multiple attribute border approximation area comparison approach to multiple attribute group decision-making with bipolar fuzzy numbers (BFNs). We reconsider the notion of BFNs and propose its corresponding operational rules, score and accuracy functions. Further, we introduce two aggregation operators and develop an MADM approach based on conventional BABAC model with overall BFNs. The proposed technique is valid and accurate for considering the conflicting attributes. We analyse the proposed method by considering a numerical example for the selection of renewable energy power generation project to show the effectiveness of the developed approach. At last, we compare the developed approach with some existing operators to show its efficiency.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-021-01606-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Decision making ; Mathematical analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Operators</subject><ispartof>Computational & applied mathematics, 2021-09, Vol.40 (6), Article 227</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021</rights><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-13d6e9311174e3190262cf6fa1e88a4a5e9b9dd810298a070f11178a78f4e4253</citedby><cites>FETCH-LOGICAL-c319t-13d6e9311174e3190262cf6fa1e88a4a5e9b9dd810298a070f11178a78f4e4253</cites><orcidid>0000-0002-4541-5336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-021-01606-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-021-01606-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jana, Chiranjibe</creatorcontrib><title>Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, we apply multiple attribute border approximation area comparison approach to multiple attribute group decision-making with bipolar fuzzy numbers (BFNs). We reconsider the notion of BFNs and propose its corresponding operational rules, score and accuracy functions. Further, we introduce two aggregation operators and develop an MADM approach based on conventional BABAC model with overall BFNs. The proposed technique is valid and accurate for considering the conflicting attributes. We analyse the proposed method by considering a numerical example for the selection of renewable energy power generation project to show the effectiveness of the developed approach. At last, we compare the developed approach with some existing operators to show its efficiency.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Decision making</subject><subject>Mathematical analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH4mdZal4SUVsYIvlJE6b0sbBdiTar8clSOxYzWh07h3pIHRJ4ZoCyJsggFNBgFECNIec8CM0oQokAQ7sGE0Y44rwHPgpOgthDcAlFWKC3p-HTWz7jcUmRt-WQ7R46d3Q49pWbWhdR7bmo-2WeGvjytW4NMHW2HXYfkXb1Wkv295tjMfNsN_v8PPsdjbHpu-9M9XqHJ00ZhPsxe-corf7u9f5I1m8PDzNZwtScVpEQnmd24JTSqWw6QIsZ1WTN4ZapYwwmS3Koq4VBVYoAxKaA6qMVI2wgmV8iq7G3vT2c7Ah6rUbfJdeapblIqOQS5koNlKVdyF42-jet1vjd5qCPnjUo0edPOofj5qnEB9DIcHd0vq_6n9S398OdPc</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Jana, Chiranjibe</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4541-5336</orcidid></search><sort><creationdate>20210901</creationdate><title>Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach</title><author>Jana, Chiranjibe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-13d6e9311174e3190262cf6fa1e88a4a5e9b9dd810298a070f11178a78f4e4253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Decision making</topic><topic>Mathematical analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jana, Chiranjibe</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jana, Chiranjibe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>40</volume><issue>6</issue><artnum>227</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, we apply multiple attribute border approximation area comparison approach to multiple attribute group decision-making with bipolar fuzzy numbers (BFNs). We reconsider the notion of BFNs and propose its corresponding operational rules, score and accuracy functions. Further, we introduce two aggregation operators and develop an MADM approach based on conventional BABAC model with overall BFNs. The proposed technique is valid and accurate for considering the conflicting attributes. We analyse the proposed method by considering a numerical example for the selection of renewable energy power generation project to show the effectiveness of the developed approach. At last, we compare the developed approach with some existing operators to show its efficiency.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-021-01606-3</doi><orcidid>https://orcid.org/0000-0002-4541-5336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2021-09, Vol.40 (6), Article 227 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2564510677 |
source | SpringerNature Journals |
subjects | Applications of Mathematics Applied physics Computational mathematics Computational Mathematics and Numerical Analysis Decision making Mathematical analysis Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Operators |
title | Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20attribute%20group%20decision-making%20method%20based%20on%20extended%20bipolar%20fuzzy%20MABAC%20approach&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Jana,%20Chiranjibe&rft.date=2021-09-01&rft.volume=40&rft.issue=6&rft.artnum=227&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-021-01606-3&rft_dat=%3Cproquest_cross%3E2564510677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564510677&rft_id=info:pmid/&rfr_iscdi=true |