Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach

In this paper, we apply multiple attribute border approximation area comparison approach to multiple attribute group decision-making with bipolar fuzzy numbers (BFNs). We reconsider the notion of BFNs and propose its corresponding operational rules, score and accuracy functions. Further, we introduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2021-09, Vol.40 (6), Article 227
1. Verfasser: Jana, Chiranjibe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Computational & applied mathematics
container_volume 40
creator Jana, Chiranjibe
description In this paper, we apply multiple attribute border approximation area comparison approach to multiple attribute group decision-making with bipolar fuzzy numbers (BFNs). We reconsider the notion of BFNs and propose its corresponding operational rules, score and accuracy functions. Further, we introduce two aggregation operators and develop an MADM approach based on conventional BABAC model with overall BFNs. The proposed technique is valid and accurate for considering the conflicting attributes. We analyse the proposed method by considering a numerical example for the selection of renewable energy power generation project to show the effectiveness of the developed approach. At last, we compare the developed approach with some existing operators to show its efficiency.
doi_str_mv 10.1007/s40314-021-01606-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564510677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564510677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-13d6e9311174e3190262cf6fa1e88a4a5e9b9dd810298a070f11178a78f4e4253</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH4mdZal4SUVsYIvlJE6b0sbBdiTar8clSOxYzWh07h3pIHRJ4ZoCyJsggFNBgFECNIec8CM0oQokAQ7sGE0Y44rwHPgpOgthDcAlFWKC3p-HTWz7jcUmRt-WQ7R46d3Q49pWbWhdR7bmo-2WeGvjytW4NMHW2HXYfkXb1Wkv295tjMfNsN_v8PPsdjbHpu-9M9XqHJ00ZhPsxe-corf7u9f5I1m8PDzNZwtScVpEQnmd24JTSqWw6QIsZ1WTN4ZapYwwmS3Koq4VBVYoAxKaA6qMVI2wgmV8iq7G3vT2c7Ah6rUbfJdeapblIqOQS5koNlKVdyF42-jet1vjd5qCPnjUo0edPOofj5qnEB9DIcHd0vq_6n9S398OdPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564510677</pqid></control><display><type>article</type><title>Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach</title><source>SpringerNature Journals</source><creator>Jana, Chiranjibe</creator><creatorcontrib>Jana, Chiranjibe</creatorcontrib><description>In this paper, we apply multiple attribute border approximation area comparison approach to multiple attribute group decision-making with bipolar fuzzy numbers (BFNs). We reconsider the notion of BFNs and propose its corresponding operational rules, score and accuracy functions. Further, we introduce two aggregation operators and develop an MADM approach based on conventional BABAC model with overall BFNs. The proposed technique is valid and accurate for considering the conflicting attributes. We analyse the proposed method by considering a numerical example for the selection of renewable energy power generation project to show the effectiveness of the developed approach. At last, we compare the developed approach with some existing operators to show its efficiency.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-021-01606-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Decision making ; Mathematical analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Operators</subject><ispartof>Computational &amp; applied mathematics, 2021-09, Vol.40 (6), Article 227</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021</rights><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-13d6e9311174e3190262cf6fa1e88a4a5e9b9dd810298a070f11178a78f4e4253</citedby><cites>FETCH-LOGICAL-c319t-13d6e9311174e3190262cf6fa1e88a4a5e9b9dd810298a070f11178a78f4e4253</cites><orcidid>0000-0002-4541-5336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-021-01606-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-021-01606-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jana, Chiranjibe</creatorcontrib><title>Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, we apply multiple attribute border approximation area comparison approach to multiple attribute group decision-making with bipolar fuzzy numbers (BFNs). We reconsider the notion of BFNs and propose its corresponding operational rules, score and accuracy functions. Further, we introduce two aggregation operators and develop an MADM approach based on conventional BABAC model with overall BFNs. The proposed technique is valid and accurate for considering the conflicting attributes. We analyse the proposed method by considering a numerical example for the selection of renewable energy power generation project to show the effectiveness of the developed approach. At last, we compare the developed approach with some existing operators to show its efficiency.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Decision making</subject><subject>Mathematical analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH4mdZal4SUVsYIvlJE6b0sbBdiTar8clSOxYzWh07h3pIHRJ4ZoCyJsggFNBgFECNIec8CM0oQokAQ7sGE0Y44rwHPgpOgthDcAlFWKC3p-HTWz7jcUmRt-WQ7R46d3Q49pWbWhdR7bmo-2WeGvjytW4NMHW2HXYfkXb1Wkv295tjMfNsN_v8PPsdjbHpu-9M9XqHJ00ZhPsxe-corf7u9f5I1m8PDzNZwtScVpEQnmd24JTSqWw6QIsZ1WTN4ZapYwwmS3Koq4VBVYoAxKaA6qMVI2wgmV8iq7G3vT2c7Ah6rUbfJdeapblIqOQS5koNlKVdyF42-jet1vjd5qCPnjUo0edPOofj5qnEB9DIcHd0vq_6n9S398OdPc</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Jana, Chiranjibe</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4541-5336</orcidid></search><sort><creationdate>20210901</creationdate><title>Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach</title><author>Jana, Chiranjibe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-13d6e9311174e3190262cf6fa1e88a4a5e9b9dd810298a070f11178a78f4e4253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Decision making</topic><topic>Mathematical analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jana, Chiranjibe</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jana, Chiranjibe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>40</volume><issue>6</issue><artnum>227</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, we apply multiple attribute border approximation area comparison approach to multiple attribute group decision-making with bipolar fuzzy numbers (BFNs). We reconsider the notion of BFNs and propose its corresponding operational rules, score and accuracy functions. Further, we introduce two aggregation operators and develop an MADM approach based on conventional BABAC model with overall BFNs. The proposed technique is valid and accurate for considering the conflicting attributes. We analyse the proposed method by considering a numerical example for the selection of renewable energy power generation project to show the effectiveness of the developed approach. At last, we compare the developed approach with some existing operators to show its efficiency.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-021-01606-3</doi><orcidid>https://orcid.org/0000-0002-4541-5336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2021-09, Vol.40 (6), Article 227
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2564510677
source SpringerNature Journals
subjects Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Decision making
Mathematical analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Operators
title Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20attribute%20group%20decision-making%20method%20based%20on%20extended%20bipolar%20fuzzy%20MABAC%20approach&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Jana,%20Chiranjibe&rft.date=2021-09-01&rft.volume=40&rft.issue=6&rft.artnum=227&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-021-01606-3&rft_dat=%3Cproquest_cross%3E2564510677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564510677&rft_id=info:pmid/&rfr_iscdi=true