Corrosion and mechanical performance of HVOF WC-based coatings with alloyed nickel binder for use in marine hydraulic applications

Hydraulic components used in the maritime environment suffer damage due to the effects of corrosion and marine biofouling accumulation. The application of engineered coatings can overcome these problems. This study investigated the corrosion and mechanical performance of novel high velocity oxygen f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2021-07, Vol.418, p.127239, Article 127239
Hauptverfasser: Javed, M.A., Ang, A.S.M., Bhadra, C.M., Piola, R., Neil, W.C., Berndt, C.C., Leigh, M., Howse, H., Wade, S.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 127239
container_title Surface & coatings technology
container_volume 418
creator Javed, M.A.
Ang, A.S.M.
Bhadra, C.M.
Piola, R.
Neil, W.C.
Berndt, C.C.
Leigh, M.
Howse, H.
Wade, S.A.
description Hydraulic components used in the maritime environment suffer damage due to the effects of corrosion and marine biofouling accumulation. The application of engineered coatings can overcome these problems. This study investigated the corrosion and mechanical performance of novel high velocity oxygen fuel (HVOF) sprayed ceramic-metal composite coatings; i.e., WC-18 wt% Hastelloy C and WC-10 wt% Ni-5 wt% Cr, designed for the protection of marine hydraulic components. A conventional atmospheric plasma sprayed (APS) ceramic coating (i.e., Al2O3-40 wt% TiO2) and uncoated Monel K500 substrate were tested for benchmarking purposes. The corrosion performance of the samples was assessed using a combination of laboratory-based tests (i.e., electrochemical polarization, neutral salt spray, hot water immersion) and field exposure tests by immersion in seawater. The mechanical properties of the samples were assessed via a drop-weight impact test and the tensile adhesion test. The results showed that the HVOF coatings exhibited better corrosion resistance and mechanical performance compared to the baseline APS ceramic coating and uncoated Monel K500 substrate. •Corrosion/mechanical properties of HVOF WC-based Ni binder coatings were studied.•HVOF coatings had excellent corrosion performance in seawater field exposure tests.•HVOF coatings have high impact strength than Monel or Al2O3.40TiO2 coating.•HVOF coatings have high adhesion strength compared to Al2O3.40TiO2 coating.•HVOF WC-based Ni binder coatings are suitable for use in maritime industry.
doi_str_mv 10.1016/j.surfcoat.2021.127239
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564175862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897221004138</els_id><sourcerecordid>2564175862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-60dc48415ad8b91b1afdfdfb7a1e3fa172ff5e09dec3584908fa286705de3b633</originalsourceid><addsrcrecordid>eNqFkMtLxDAQxoMouD7-BQl47ppH27Q3ZfEFghcfx5AmEzdrN6lJq-zVv9wsq2eZwwfDfN_M_BA6o2ROCa0vVvM0RauDGueMMDqnTDDe7qEZbURbcF6KfTQjrBJF0wp2iI5SWhFCqGjLGfpehBhDcsFj5Q1eg14q77Tq8QDRhrhWXgMOFt-9PN7g10XRqQQGb7c5_5bwlxuXWPV92ORuNr5DjzvnDUSc3XhKgJ3HaxWdB7zcmKim3mmshiFLzgg-naADq_oEp796jJ5vrp8Wd8XD4-394uqh0LwkY1ETo8umpJUyTdfSjiprcnVCUeBWUcGsrYC0BjSvmrIljVWsqQWpDPCu5vwYne9yhxg-JkijXIUp-rxSsqouqaiamuWpejelM5YUwcohunz_RlIit7zlSv7xllvecsc7Gy93Rsg_fDqIMmkHmZ5xEfQoTXD_RfwAy46PQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564175862</pqid></control><display><type>article</type><title>Corrosion and mechanical performance of HVOF WC-based coatings with alloyed nickel binder for use in marine hydraulic applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Javed, M.A. ; Ang, A.S.M. ; Bhadra, C.M. ; Piola, R. ; Neil, W.C. ; Berndt, C.C. ; Leigh, M. ; Howse, H. ; Wade, S.A.</creator><creatorcontrib>Javed, M.A. ; Ang, A.S.M. ; Bhadra, C.M. ; Piola, R. ; Neil, W.C. ; Berndt, C.C. ; Leigh, M. ; Howse, H. ; Wade, S.A.</creatorcontrib><description>Hydraulic components used in the maritime environment suffer damage due to the effects of corrosion and marine biofouling accumulation. The application of engineered coatings can overcome these problems. This study investigated the corrosion and mechanical performance of novel high velocity oxygen fuel (HVOF) sprayed ceramic-metal composite coatings; i.e., WC-18 wt% Hastelloy C and WC-10 wt% Ni-5 wt% Cr, designed for the protection of marine hydraulic components. A conventional atmospheric plasma sprayed (APS) ceramic coating (i.e., Al2O3-40 wt% TiO2) and uncoated Monel K500 substrate were tested for benchmarking purposes. The corrosion performance of the samples was assessed using a combination of laboratory-based tests (i.e., electrochemical polarization, neutral salt spray, hot water immersion) and field exposure tests by immersion in seawater. The mechanical properties of the samples were assessed via a drop-weight impact test and the tensile adhesion test. The results showed that the HVOF coatings exhibited better corrosion resistance and mechanical performance compared to the baseline APS ceramic coating and uncoated Monel K500 substrate. •Corrosion/mechanical properties of HVOF WC-based Ni binder coatings were studied.•HVOF coatings had excellent corrosion performance in seawater field exposure tests.•HVOF coatings have high impact strength than Monel or Al2O3.40TiO2 coating.•HVOF coatings have high adhesion strength compared to Al2O3.40TiO2 coating.•HVOF WC-based Ni binder coatings are suitable for use in maritime industry.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2021.127239</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adhesion test ; Adhesion tests ; Alloying ; Aluminum oxide ; Biofouling ; Ceramic coatings ; Ceramic glazes ; Ceramics ; Cermets ; Corrosion ; Corrosion effects ; Corrosion resistance ; Corrosion tests ; Damage accumulation ; Drop tests ; Hastelloy (trademark) ; HVOF coatings ; Hydraulics ; Immersion test ; Immersion tests (corrosion) ; Impact test ; Mechanical properties ; Monel (trademark) ; Nickel base alloys ; Protective coatings ; Salt spray test ; Seawater ; Submerging ; Substrates ; Titanium dioxide ; Tungsten carbide ; Water immersion</subject><ispartof>Surface &amp; coatings technology, 2021-07, Vol.418, p.127239, Article 127239</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 25, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-60dc48415ad8b91b1afdfdfb7a1e3fa172ff5e09dec3584908fa286705de3b633</citedby><cites>FETCH-LOGICAL-c340t-60dc48415ad8b91b1afdfdfb7a1e3fa172ff5e09dec3584908fa286705de3b633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897221004138$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Javed, M.A.</creatorcontrib><creatorcontrib>Ang, A.S.M.</creatorcontrib><creatorcontrib>Bhadra, C.M.</creatorcontrib><creatorcontrib>Piola, R.</creatorcontrib><creatorcontrib>Neil, W.C.</creatorcontrib><creatorcontrib>Berndt, C.C.</creatorcontrib><creatorcontrib>Leigh, M.</creatorcontrib><creatorcontrib>Howse, H.</creatorcontrib><creatorcontrib>Wade, S.A.</creatorcontrib><title>Corrosion and mechanical performance of HVOF WC-based coatings with alloyed nickel binder for use in marine hydraulic applications</title><title>Surface &amp; coatings technology</title><description>Hydraulic components used in the maritime environment suffer damage due to the effects of corrosion and marine biofouling accumulation. The application of engineered coatings can overcome these problems. This study investigated the corrosion and mechanical performance of novel high velocity oxygen fuel (HVOF) sprayed ceramic-metal composite coatings; i.e., WC-18 wt% Hastelloy C and WC-10 wt% Ni-5 wt% Cr, designed for the protection of marine hydraulic components. A conventional atmospheric plasma sprayed (APS) ceramic coating (i.e., Al2O3-40 wt% TiO2) and uncoated Monel K500 substrate were tested for benchmarking purposes. The corrosion performance of the samples was assessed using a combination of laboratory-based tests (i.e., electrochemical polarization, neutral salt spray, hot water immersion) and field exposure tests by immersion in seawater. The mechanical properties of the samples were assessed via a drop-weight impact test and the tensile adhesion test. The results showed that the HVOF coatings exhibited better corrosion resistance and mechanical performance compared to the baseline APS ceramic coating and uncoated Monel K500 substrate. •Corrosion/mechanical properties of HVOF WC-based Ni binder coatings were studied.•HVOF coatings had excellent corrosion performance in seawater field exposure tests.•HVOF coatings have high impact strength than Monel or Al2O3.40TiO2 coating.•HVOF coatings have high adhesion strength compared to Al2O3.40TiO2 coating.•HVOF WC-based Ni binder coatings are suitable for use in maritime industry.</description><subject>Adhesion test</subject><subject>Adhesion tests</subject><subject>Alloying</subject><subject>Aluminum oxide</subject><subject>Biofouling</subject><subject>Ceramic coatings</subject><subject>Ceramic glazes</subject><subject>Ceramics</subject><subject>Cermets</subject><subject>Corrosion</subject><subject>Corrosion effects</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Damage accumulation</subject><subject>Drop tests</subject><subject>Hastelloy (trademark)</subject><subject>HVOF coatings</subject><subject>Hydraulics</subject><subject>Immersion test</subject><subject>Immersion tests (corrosion)</subject><subject>Impact test</subject><subject>Mechanical properties</subject><subject>Monel (trademark)</subject><subject>Nickel base alloys</subject><subject>Protective coatings</subject><subject>Salt spray test</subject><subject>Seawater</subject><subject>Submerging</subject><subject>Substrates</subject><subject>Titanium dioxide</subject><subject>Tungsten carbide</subject><subject>Water immersion</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLxDAQxoMouD7-BQl47ppH27Q3ZfEFghcfx5AmEzdrN6lJq-zVv9wsq2eZwwfDfN_M_BA6o2ROCa0vVvM0RauDGueMMDqnTDDe7qEZbURbcF6KfTQjrBJF0wp2iI5SWhFCqGjLGfpehBhDcsFj5Q1eg14q77Tq8QDRhrhWXgMOFt-9PN7g10XRqQQGb7c5_5bwlxuXWPV92ORuNr5DjzvnDUSc3XhKgJ3HaxWdB7zcmKim3mmshiFLzgg-naADq_oEp796jJ5vrp8Wd8XD4-394uqh0LwkY1ETo8umpJUyTdfSjiprcnVCUeBWUcGsrYC0BjSvmrIljVWsqQWpDPCu5vwYne9yhxg-JkijXIUp-rxSsqouqaiamuWpejelM5YUwcohunz_RlIit7zlSv7xllvecsc7Gy93Rsg_fDqIMmkHmZ5xEfQoTXD_RfwAy46PQQ</recordid><startdate>20210725</startdate><enddate>20210725</enddate><creator>Javed, M.A.</creator><creator>Ang, A.S.M.</creator><creator>Bhadra, C.M.</creator><creator>Piola, R.</creator><creator>Neil, W.C.</creator><creator>Berndt, C.C.</creator><creator>Leigh, M.</creator><creator>Howse, H.</creator><creator>Wade, S.A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210725</creationdate><title>Corrosion and mechanical performance of HVOF WC-based coatings with alloyed nickel binder for use in marine hydraulic applications</title><author>Javed, M.A. ; Ang, A.S.M. ; Bhadra, C.M. ; Piola, R. ; Neil, W.C. ; Berndt, C.C. ; Leigh, M. ; Howse, H. ; Wade, S.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-60dc48415ad8b91b1afdfdfb7a1e3fa172ff5e09dec3584908fa286705de3b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesion test</topic><topic>Adhesion tests</topic><topic>Alloying</topic><topic>Aluminum oxide</topic><topic>Biofouling</topic><topic>Ceramic coatings</topic><topic>Ceramic glazes</topic><topic>Ceramics</topic><topic>Cermets</topic><topic>Corrosion</topic><topic>Corrosion effects</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Damage accumulation</topic><topic>Drop tests</topic><topic>Hastelloy (trademark)</topic><topic>HVOF coatings</topic><topic>Hydraulics</topic><topic>Immersion test</topic><topic>Immersion tests (corrosion)</topic><topic>Impact test</topic><topic>Mechanical properties</topic><topic>Monel (trademark)</topic><topic>Nickel base alloys</topic><topic>Protective coatings</topic><topic>Salt spray test</topic><topic>Seawater</topic><topic>Submerging</topic><topic>Substrates</topic><topic>Titanium dioxide</topic><topic>Tungsten carbide</topic><topic>Water immersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javed, M.A.</creatorcontrib><creatorcontrib>Ang, A.S.M.</creatorcontrib><creatorcontrib>Bhadra, C.M.</creatorcontrib><creatorcontrib>Piola, R.</creatorcontrib><creatorcontrib>Neil, W.C.</creatorcontrib><creatorcontrib>Berndt, C.C.</creatorcontrib><creatorcontrib>Leigh, M.</creatorcontrib><creatorcontrib>Howse, H.</creatorcontrib><creatorcontrib>Wade, S.A.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javed, M.A.</au><au>Ang, A.S.M.</au><au>Bhadra, C.M.</au><au>Piola, R.</au><au>Neil, W.C.</au><au>Berndt, C.C.</au><au>Leigh, M.</au><au>Howse, H.</au><au>Wade, S.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion and mechanical performance of HVOF WC-based coatings with alloyed nickel binder for use in marine hydraulic applications</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2021-07-25</date><risdate>2021</risdate><volume>418</volume><spage>127239</spage><pages>127239-</pages><artnum>127239</artnum><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>Hydraulic components used in the maritime environment suffer damage due to the effects of corrosion and marine biofouling accumulation. The application of engineered coatings can overcome these problems. This study investigated the corrosion and mechanical performance of novel high velocity oxygen fuel (HVOF) sprayed ceramic-metal composite coatings; i.e., WC-18 wt% Hastelloy C and WC-10 wt% Ni-5 wt% Cr, designed for the protection of marine hydraulic components. A conventional atmospheric plasma sprayed (APS) ceramic coating (i.e., Al2O3-40 wt% TiO2) and uncoated Monel K500 substrate were tested for benchmarking purposes. The corrosion performance of the samples was assessed using a combination of laboratory-based tests (i.e., electrochemical polarization, neutral salt spray, hot water immersion) and field exposure tests by immersion in seawater. The mechanical properties of the samples were assessed via a drop-weight impact test and the tensile adhesion test. The results showed that the HVOF coatings exhibited better corrosion resistance and mechanical performance compared to the baseline APS ceramic coating and uncoated Monel K500 substrate. •Corrosion/mechanical properties of HVOF WC-based Ni binder coatings were studied.•HVOF coatings had excellent corrosion performance in seawater field exposure tests.•HVOF coatings have high impact strength than Monel or Al2O3.40TiO2 coating.•HVOF coatings have high adhesion strength compared to Al2O3.40TiO2 coating.•HVOF WC-based Ni binder coatings are suitable for use in maritime industry.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2021.127239</doi></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2021-07, Vol.418, p.127239, Article 127239
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_journals_2564175862
source Elsevier ScienceDirect Journals Complete
subjects Adhesion test
Adhesion tests
Alloying
Aluminum oxide
Biofouling
Ceramic coatings
Ceramic glazes
Ceramics
Cermets
Corrosion
Corrosion effects
Corrosion resistance
Corrosion tests
Damage accumulation
Drop tests
Hastelloy (trademark)
HVOF coatings
Hydraulics
Immersion test
Immersion tests (corrosion)
Impact test
Mechanical properties
Monel (trademark)
Nickel base alloys
Protective coatings
Salt spray test
Seawater
Submerging
Substrates
Titanium dioxide
Tungsten carbide
Water immersion
title Corrosion and mechanical performance of HVOF WC-based coatings with alloyed nickel binder for use in marine hydraulic applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20and%20mechanical%20performance%20of%20HVOF%20WC-based%20coatings%20with%20alloyed%20nickel%20binder%20for%20use%20in%20marine%20hydraulic%20applications&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Javed,%20M.A.&rft.date=2021-07-25&rft.volume=418&rft.spage=127239&rft.pages=127239-&rft.artnum=127239&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2021.127239&rft_dat=%3Cproquest_cross%3E2564175862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564175862&rft_id=info:pmid/&rft_els_id=S0257897221004138&rfr_iscdi=true