Effect of solid-state phase transformation on residual stress of selective laser melting Ti6Al4V

Residual stress in selective laser melting (SLM) is one of the key challenges in terms of precision control, success rate and the performance of deposited components. Ti6Al4V belongs to α+β titanium alloy, the residual stress of selective laser melted (SLMed) Ti6Al4V component maybe affected by soli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-07, Vol.819, p.141299, Article 141299
Hauptverfasser: Chen, Shu-guang, Zhang, Yi-du, Wu, Qiong, Gao, Han-jun, Gao, Zi-han, Li, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 141299
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 819
creator Chen, Shu-guang
Zhang, Yi-du
Wu, Qiong
Gao, Han-jun
Gao, Zi-han
Li, Xin
description Residual stress in selective laser melting (SLM) is one of the key challenges in terms of precision control, success rate and the performance of deposited components. Ti6Al4V belongs to α+β titanium alloy, the residual stress of selective laser melted (SLMed) Ti6Al4V component maybe affected by solid-state phase transformation result from complex thermal history of SLM. In the present study, effect of solid-state phase transformation on residual stress of SLM Ti6Al4V was investigated. A coupled modeling method of thermo-metallurgical-mechanical considering solid-state phase transition is provided and validated by microstructure observation and residual stress measurements. Then the solid-state phase transformation strain was neglected in the validated model, the computed residual stress is used to investigate the effect of solid-state phase transformation strain on residual stress by comparing with experimental measurements. In addition, the influence of the difference in yield strength and thermal expansion coefficient between the original phase and the transition phase on the residual stress is discussed. It has been found that the residual stress of SLMed Ti6Al4V is related to the direction, the longitudinal residual stress is about twice transverse, and they are all tensile stresses. The microstructure and residual stress predicted by the simulation are in good agreement with the experimental measurements. The microstructure of SLM Ti6Al4V is mainly composed of martensite α', and the average error between the predicted longitudinal stress and measurement is 2.1%. The solid-state phase transformation has a stress relaxation effect during the SLM Ti6Al4V, predicted longitudinal and transverse residual stress exceeds the experimental measurement by up to 80.7% and 53.9%, when neglecting the solid-state phase transformation strain. The influence of the solid-state phase transformation of SLM Ti6Al4V on the residual stress is mainly determined by the volume change between the solid-state phases.
doi_str_mv 10.1016/j.msea.2021.141299
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564175697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321005682</els_id><sourcerecordid>2564175697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-441c9f83ae67f83979730989c16ff44b3f3b3a9d4549bb8f04d0c71f779e57dd3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz61JkzYNeFmW9Q8seFm9xrSdaErbrElW8NubtZ6FgTeH-b2ZeQhdU5JTQqvbPh8D6LwgBc0pp4WUJ2hBa8EyLll1ihZEFjQriWTn6CKEnhBCOSkX6G1jDLQRO4ODG2yXhagj4P2HDoCj11Mwzo86WjfhVB6C7Q56wCGmNvxiMCQD-wV4SIzHIwzRTu94Z6vVwF8v0ZnRQ4CrP12il_vNbv2YbZ8fntarbdYyyWPGOW2lqZmGSiSRQgpGZC1bWhnDecMMa5iWHS-5bJraEN6RVlAjhIRSdB1bopvZd-_d5wFCVL07-CmtVEVZcSrKKlkuUTFPtd6F4MGovbej9t-KEnVMUvXqmKQ6JqnmJBN0N0OQ7v-y4FVoLUwtdNan11Xn7H_4D2v0fIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564175697</pqid></control><display><type>article</type><title>Effect of solid-state phase transformation on residual stress of selective laser melting Ti6Al4V</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Shu-guang ; Zhang, Yi-du ; Wu, Qiong ; Gao, Han-jun ; Gao, Zi-han ; Li, Xin</creator><creatorcontrib>Chen, Shu-guang ; Zhang, Yi-du ; Wu, Qiong ; Gao, Han-jun ; Gao, Zi-han ; Li, Xin</creatorcontrib><description>Residual stress in selective laser melting (SLM) is one of the key challenges in terms of precision control, success rate and the performance of deposited components. Ti6Al4V belongs to α+β titanium alloy, the residual stress of selective laser melted (SLMed) Ti6Al4V component maybe affected by solid-state phase transformation result from complex thermal history of SLM. In the present study, effect of solid-state phase transformation on residual stress of SLM Ti6Al4V was investigated. A coupled modeling method of thermo-metallurgical-mechanical considering solid-state phase transition is provided and validated by microstructure observation and residual stress measurements. Then the solid-state phase transformation strain was neglected in the validated model, the computed residual stress is used to investigate the effect of solid-state phase transformation strain on residual stress by comparing with experimental measurements. In addition, the influence of the difference in yield strength and thermal expansion coefficient between the original phase and the transition phase on the residual stress is discussed. It has been found that the residual stress of SLMed Ti6Al4V is related to the direction, the longitudinal residual stress is about twice transverse, and they are all tensile stresses. The microstructure and residual stress predicted by the simulation are in good agreement with the experimental measurements. The microstructure of SLM Ti6Al4V is mainly composed of martensite α', and the average error between the predicted longitudinal stress and measurement is 2.1%. The solid-state phase transformation has a stress relaxation effect during the SLM Ti6Al4V, predicted longitudinal and transverse residual stress exceeds the experimental measurement by up to 80.7% and 53.9%, when neglecting the solid-state phase transformation strain. The influence of the solid-state phase transformation of SLM Ti6Al4V on the residual stress is mainly determined by the volume change between the solid-state phases.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.141299</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Additive manufacturing ; Elective laser melting ; Laser beam melting ; Lasers ; Martensite ; Metallurgy ; Microstructure ; Phase transitions ; Residual stress ; Solid phase transition ; Solid state ; Strain ; Stress relaxation ; Thermal expansion ; Thermal transformations ; Titanium alloys ; Titanium base alloys</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-07, Vol.819, p.141299, Article 141299</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-441c9f83ae67f83979730989c16ff44b3f3b3a9d4549bb8f04d0c71f779e57dd3</citedby><cites>FETCH-LOGICAL-c394t-441c9f83ae67f83979730989c16ff44b3f3b3a9d4549bb8f04d0c71f779e57dd3</cites><orcidid>0000-0002-9579-1137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509321005682$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chen, Shu-guang</creatorcontrib><creatorcontrib>Zhang, Yi-du</creatorcontrib><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Gao, Han-jun</creatorcontrib><creatorcontrib>Gao, Zi-han</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><title>Effect of solid-state phase transformation on residual stress of selective laser melting Ti6Al4V</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Residual stress in selective laser melting (SLM) is one of the key challenges in terms of precision control, success rate and the performance of deposited components. Ti6Al4V belongs to α+β titanium alloy, the residual stress of selective laser melted (SLMed) Ti6Al4V component maybe affected by solid-state phase transformation result from complex thermal history of SLM. In the present study, effect of solid-state phase transformation on residual stress of SLM Ti6Al4V was investigated. A coupled modeling method of thermo-metallurgical-mechanical considering solid-state phase transition is provided and validated by microstructure observation and residual stress measurements. Then the solid-state phase transformation strain was neglected in the validated model, the computed residual stress is used to investigate the effect of solid-state phase transformation strain on residual stress by comparing with experimental measurements. In addition, the influence of the difference in yield strength and thermal expansion coefficient between the original phase and the transition phase on the residual stress is discussed. It has been found that the residual stress of SLMed Ti6Al4V is related to the direction, the longitudinal residual stress is about twice transverse, and they are all tensile stresses. The microstructure and residual stress predicted by the simulation are in good agreement with the experimental measurements. The microstructure of SLM Ti6Al4V is mainly composed of martensite α', and the average error between the predicted longitudinal stress and measurement is 2.1%. The solid-state phase transformation has a stress relaxation effect during the SLM Ti6Al4V, predicted longitudinal and transverse residual stress exceeds the experimental measurement by up to 80.7% and 53.9%, when neglecting the solid-state phase transformation strain. The influence of the solid-state phase transformation of SLM Ti6Al4V on the residual stress is mainly determined by the volume change between the solid-state phases.</description><subject>Additive manufacturing</subject><subject>Elective laser melting</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Martensite</subject><subject>Metallurgy</subject><subject>Microstructure</subject><subject>Phase transitions</subject><subject>Residual stress</subject><subject>Solid phase transition</subject><subject>Solid state</subject><subject>Strain</subject><subject>Stress relaxation</subject><subject>Thermal expansion</subject><subject>Thermal transformations</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz61JkzYNeFmW9Q8seFm9xrSdaErbrElW8NubtZ6FgTeH-b2ZeQhdU5JTQqvbPh8D6LwgBc0pp4WUJ2hBa8EyLll1ihZEFjQriWTn6CKEnhBCOSkX6G1jDLQRO4ODG2yXhagj4P2HDoCj11Mwzo86WjfhVB6C7Q56wCGmNvxiMCQD-wV4SIzHIwzRTu94Z6vVwF8v0ZnRQ4CrP12il_vNbv2YbZ8fntarbdYyyWPGOW2lqZmGSiSRQgpGZC1bWhnDecMMa5iWHS-5bJraEN6RVlAjhIRSdB1bopvZd-_d5wFCVL07-CmtVEVZcSrKKlkuUTFPtd6F4MGovbej9t-KEnVMUvXqmKQ6JqnmJBN0N0OQ7v-y4FVoLUwtdNan11Xn7H_4D2v0fIM</recordid><startdate>20210705</startdate><enddate>20210705</enddate><creator>Chen, Shu-guang</creator><creator>Zhang, Yi-du</creator><creator>Wu, Qiong</creator><creator>Gao, Han-jun</creator><creator>Gao, Zi-han</creator><creator>Li, Xin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9579-1137</orcidid></search><sort><creationdate>20210705</creationdate><title>Effect of solid-state phase transformation on residual stress of selective laser melting Ti6Al4V</title><author>Chen, Shu-guang ; Zhang, Yi-du ; Wu, Qiong ; Gao, Han-jun ; Gao, Zi-han ; Li, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-441c9f83ae67f83979730989c16ff44b3f3b3a9d4549bb8f04d0c71f779e57dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>Elective laser melting</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Martensite</topic><topic>Metallurgy</topic><topic>Microstructure</topic><topic>Phase transitions</topic><topic>Residual stress</topic><topic>Solid phase transition</topic><topic>Solid state</topic><topic>Strain</topic><topic>Stress relaxation</topic><topic>Thermal expansion</topic><topic>Thermal transformations</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shu-guang</creatorcontrib><creatorcontrib>Zhang, Yi-du</creatorcontrib><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Gao, Han-jun</creatorcontrib><creatorcontrib>Gao, Zi-han</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shu-guang</au><au>Zhang, Yi-du</au><au>Wu, Qiong</au><au>Gao, Han-jun</au><au>Gao, Zi-han</au><au>Li, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of solid-state phase transformation on residual stress of selective laser melting Ti6Al4V</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-07-05</date><risdate>2021</risdate><volume>819</volume><spage>141299</spage><pages>141299-</pages><artnum>141299</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Residual stress in selective laser melting (SLM) is one of the key challenges in terms of precision control, success rate and the performance of deposited components. Ti6Al4V belongs to α+β titanium alloy, the residual stress of selective laser melted (SLMed) Ti6Al4V component maybe affected by solid-state phase transformation result from complex thermal history of SLM. In the present study, effect of solid-state phase transformation on residual stress of SLM Ti6Al4V was investigated. A coupled modeling method of thermo-metallurgical-mechanical considering solid-state phase transition is provided and validated by microstructure observation and residual stress measurements. Then the solid-state phase transformation strain was neglected in the validated model, the computed residual stress is used to investigate the effect of solid-state phase transformation strain on residual stress by comparing with experimental measurements. In addition, the influence of the difference in yield strength and thermal expansion coefficient between the original phase and the transition phase on the residual stress is discussed. It has been found that the residual stress of SLMed Ti6Al4V is related to the direction, the longitudinal residual stress is about twice transverse, and they are all tensile stresses. The microstructure and residual stress predicted by the simulation are in good agreement with the experimental measurements. The microstructure of SLM Ti6Al4V is mainly composed of martensite α', and the average error between the predicted longitudinal stress and measurement is 2.1%. The solid-state phase transformation has a stress relaxation effect during the SLM Ti6Al4V, predicted longitudinal and transverse residual stress exceeds the experimental measurement by up to 80.7% and 53.9%, when neglecting the solid-state phase transformation strain. The influence of the solid-state phase transformation of SLM Ti6Al4V on the residual stress is mainly determined by the volume change between the solid-state phases.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.141299</doi><orcidid>https://orcid.org/0000-0002-9579-1137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-07, Vol.819, p.141299, Article 141299
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2564175697
source Elsevier ScienceDirect Journals
subjects Additive manufacturing
Elective laser melting
Laser beam melting
Lasers
Martensite
Metallurgy
Microstructure
Phase transitions
Residual stress
Solid phase transition
Solid state
Strain
Stress relaxation
Thermal expansion
Thermal transformations
Titanium alloys
Titanium base alloys
title Effect of solid-state phase transformation on residual stress of selective laser melting Ti6Al4V
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20solid-state%20phase%20transformation%20on%20residual%20stress%20of%20selective%20laser%20melting%20Ti6Al4V&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Chen,%20Shu-guang&rft.date=2021-07-05&rft.volume=819&rft.spage=141299&rft.pages=141299-&rft.artnum=141299&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.141299&rft_dat=%3Cproquest_cross%3E2564175697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564175697&rft_id=info:pmid/&rft_els_id=S0921509321005682&rfr_iscdi=true