Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system

In this work, series of Ti matrix composites based on the Ti6Al4V-ZrB2-(Si) system were successfully fabricated through powder metallurgy. The room-temperature tensile strengths were significantly enhanced to 1063 MPa and 1185 MPa with 4.5 wt% and 9 wt% ZrB2 addition, respectively. The high-temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-07, Vol.819, p.141488, Article 141488
Hauptverfasser: Jiang, Shan, An, Qi, Cui, Xiping, Xiang, Xuelian, Huang, Lujun, Zhang, Rui, Sun, Yuan, Geng, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 141488
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 819
creator Jiang, Shan
An, Qi
Cui, Xiping
Xiang, Xuelian
Huang, Lujun
Zhang, Rui
Sun, Yuan
Geng, Lin
description In this work, series of Ti matrix composites based on the Ti6Al4V-ZrB2-(Si) system were successfully fabricated through powder metallurgy. The room-temperature tensile strengths were significantly enhanced to 1063 MPa and 1185 MPa with 4.5 wt% and 9 wt% ZrB2 addition, respectively. The high-temperature tensile strength was enhanced to 501 MPa (600 °C) and 327 MPa (700 °C) for Ti64-4.5 wt%ZrB2 composite, and 693 MPa (600 °C) and 422 MPa (700 °C) for Ti64-9 wt%ZrB2 composite. As for the creep resistance, the Ti64-9 wt%ZrB2 composite exhibited the lowest steady-state creep rate of (4.88 × 10-7 s-1) and the longest creep time to rupture (6.28 h). Adding Si to construct the two-scale network structure further enhanced the mechanical properties, especially at high temperature, the strengths were elevated by 26% and 39% for the Ti64-4.5 wt%ZrB2-1wt.%Si composite at 600 °C and 700 °C, respectively, and the creep resistance was markedly enhanced with the help of the second-scale silicide reinforcement network.
doi_str_mv 10.1016/j.msea.2021.141488
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564175669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321007577</els_id><sourcerecordid>2564175669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-722d94b097d0990b63af492ad4636f394ada36b89c1f8cd91d39555a815317323</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAjS5mzGsyE3CjxapQcGF14SZkkgzN0HmYpGL_vSnj2tWFe8859_ABcIlRjhHmt23eBatyggjOMcOsqo7ADFclzZig_BjMkCA4K5Cgp-AshBYhhBkqZsAtVe2dVtENPVS9gZ3VG9WnzRaOfhitj84GODQwbiyMLqbbroOdit79QD104xBcTIpaBWtgClk7fr9lH9mnfyDZ9Zu7gWEfou3OwUmjtsFe_M05eF8-rhfP2er16WVxv8o0JVXMSkKMYDUSpUFCoJpT1TBBlGGc8oYKpoyivK6Exk2ljcCGiqIoVIULiktK6BxcTbmp_tfOhijbYef79FKSgjNcFpyLpCKTSvshBG8bOXrXKb-XGMkDUtnKA1J5QConpMl0N5ls6v_trJdBO9tra5y3OkozuP_svyk5fjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564175669</pqid></control><display><type>article</type><title>Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jiang, Shan ; An, Qi ; Cui, Xiping ; Xiang, Xuelian ; Huang, Lujun ; Zhang, Rui ; Sun, Yuan ; Geng, Lin</creator><creatorcontrib>Jiang, Shan ; An, Qi ; Cui, Xiping ; Xiang, Xuelian ; Huang, Lujun ; Zhang, Rui ; Sun, Yuan ; Geng, Lin</creatorcontrib><description>In this work, series of Ti matrix composites based on the Ti6Al4V-ZrB2-(Si) system were successfully fabricated through powder metallurgy. The room-temperature tensile strengths were significantly enhanced to 1063 MPa and 1185 MPa with 4.5 wt% and 9 wt% ZrB2 addition, respectively. The high-temperature tensile strength was enhanced to 501 MPa (600 °C) and 327 MPa (700 °C) for Ti64-4.5 wt%ZrB2 composite, and 693 MPa (600 °C) and 422 MPa (700 °C) for Ti64-9 wt%ZrB2 composite. As for the creep resistance, the Ti64-9 wt%ZrB2 composite exhibited the lowest steady-state creep rate of (4.88 × 10-7 s-1) and the longest creep time to rupture (6.28 h). Adding Si to construct the two-scale network structure further enhanced the mechanical properties, especially at high temperature, the strengths were elevated by 26% and 39% for the Ti64-4.5 wt%ZrB2-1wt.%Si composite at 600 °C and 700 °C, respectively, and the creep resistance was markedly enhanced with the help of the second-scale silicide reinforcement network.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.141488</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Composite materials ; Creep rate ; Creep strength ; High temperature ; Mechanical properties ; Metal matrix composites ; Powder metallurgy ; Refractory materials ; Room temperature ; Silicides ; Silicon ; Steady state creep ; Tensile strength ; Titanium base alloys ; Zirconium compounds</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-07, Vol.819, p.141488, Article 141488</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-722d94b097d0990b63af492ad4636f394ada36b89c1f8cd91d39555a815317323</citedby><cites>FETCH-LOGICAL-c328t-722d94b097d0990b63af492ad4636f394ada36b89c1f8cd91d39555a815317323</cites><orcidid>0000-0003-2811-3798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2021.141488$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>An, Qi</creatorcontrib><creatorcontrib>Cui, Xiping</creatorcontrib><creatorcontrib>Xiang, Xuelian</creatorcontrib><creatorcontrib>Huang, Lujun</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Sun, Yuan</creatorcontrib><creatorcontrib>Geng, Lin</creatorcontrib><title>Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>In this work, series of Ti matrix composites based on the Ti6Al4V-ZrB2-(Si) system were successfully fabricated through powder metallurgy. The room-temperature tensile strengths were significantly enhanced to 1063 MPa and 1185 MPa with 4.5 wt% and 9 wt% ZrB2 addition, respectively. The high-temperature tensile strength was enhanced to 501 MPa (600 °C) and 327 MPa (700 °C) for Ti64-4.5 wt%ZrB2 composite, and 693 MPa (600 °C) and 422 MPa (700 °C) for Ti64-9 wt%ZrB2 composite. As for the creep resistance, the Ti64-9 wt%ZrB2 composite exhibited the lowest steady-state creep rate of (4.88 × 10-7 s-1) and the longest creep time to rupture (6.28 h). Adding Si to construct the two-scale network structure further enhanced the mechanical properties, especially at high temperature, the strengths were elevated by 26% and 39% for the Ti64-4.5 wt%ZrB2-1wt.%Si composite at 600 °C and 700 °C, respectively, and the creep resistance was markedly enhanced with the help of the second-scale silicide reinforcement network.</description><subject>Composite materials</subject><subject>Creep rate</subject><subject>Creep strength</subject><subject>High temperature</subject><subject>Mechanical properties</subject><subject>Metal matrix composites</subject><subject>Powder metallurgy</subject><subject>Refractory materials</subject><subject>Room temperature</subject><subject>Silicides</subject><subject>Silicon</subject><subject>Steady state creep</subject><subject>Tensile strength</subject><subject>Titanium base alloys</subject><subject>Zirconium compounds</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAjS5mzGsyE3CjxapQcGF14SZkkgzN0HmYpGL_vSnj2tWFe8859_ABcIlRjhHmt23eBatyggjOMcOsqo7ADFclzZig_BjMkCA4K5Cgp-AshBYhhBkqZsAtVe2dVtENPVS9gZ3VG9WnzRaOfhitj84GODQwbiyMLqbbroOdit79QD104xBcTIpaBWtgClk7fr9lH9mnfyDZ9Zu7gWEfou3OwUmjtsFe_M05eF8-rhfP2er16WVxv8o0JVXMSkKMYDUSpUFCoJpT1TBBlGGc8oYKpoyivK6Exk2ljcCGiqIoVIULiktK6BxcTbmp_tfOhijbYef79FKSgjNcFpyLpCKTSvshBG8bOXrXKb-XGMkDUtnKA1J5QConpMl0N5ls6v_trJdBO9tra5y3OkozuP_svyk5fjU</recordid><startdate>20210705</startdate><enddate>20210705</enddate><creator>Jiang, Shan</creator><creator>An, Qi</creator><creator>Cui, Xiping</creator><creator>Xiang, Xuelian</creator><creator>Huang, Lujun</creator><creator>Zhang, Rui</creator><creator>Sun, Yuan</creator><creator>Geng, Lin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2811-3798</orcidid></search><sort><creationdate>20210705</creationdate><title>Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system</title><author>Jiang, Shan ; An, Qi ; Cui, Xiping ; Xiang, Xuelian ; Huang, Lujun ; Zhang, Rui ; Sun, Yuan ; Geng, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-722d94b097d0990b63af492ad4636f394ada36b89c1f8cd91d39555a815317323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Composite materials</topic><topic>Creep rate</topic><topic>Creep strength</topic><topic>High temperature</topic><topic>Mechanical properties</topic><topic>Metal matrix composites</topic><topic>Powder metallurgy</topic><topic>Refractory materials</topic><topic>Room temperature</topic><topic>Silicides</topic><topic>Silicon</topic><topic>Steady state creep</topic><topic>Tensile strength</topic><topic>Titanium base alloys</topic><topic>Zirconium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>An, Qi</creatorcontrib><creatorcontrib>Cui, Xiping</creatorcontrib><creatorcontrib>Xiang, Xuelian</creatorcontrib><creatorcontrib>Huang, Lujun</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Sun, Yuan</creatorcontrib><creatorcontrib>Geng, Lin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Shan</au><au>An, Qi</au><au>Cui, Xiping</au><au>Xiang, Xuelian</au><au>Huang, Lujun</au><au>Zhang, Rui</au><au>Sun, Yuan</au><au>Geng, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-07-05</date><risdate>2021</risdate><volume>819</volume><spage>141488</spage><pages>141488-</pages><artnum>141488</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>In this work, series of Ti matrix composites based on the Ti6Al4V-ZrB2-(Si) system were successfully fabricated through powder metallurgy. The room-temperature tensile strengths were significantly enhanced to 1063 MPa and 1185 MPa with 4.5 wt% and 9 wt% ZrB2 addition, respectively. The high-temperature tensile strength was enhanced to 501 MPa (600 °C) and 327 MPa (700 °C) for Ti64-4.5 wt%ZrB2 composite, and 693 MPa (600 °C) and 422 MPa (700 °C) for Ti64-9 wt%ZrB2 composite. As for the creep resistance, the Ti64-9 wt%ZrB2 composite exhibited the lowest steady-state creep rate of (4.88 × 10-7 s-1) and the longest creep time to rupture (6.28 h). Adding Si to construct the two-scale network structure further enhanced the mechanical properties, especially at high temperature, the strengths were elevated by 26% and 39% for the Ti64-4.5 wt%ZrB2-1wt.%Si composite at 600 °C and 700 °C, respectively, and the creep resistance was markedly enhanced with the help of the second-scale silicide reinforcement network.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.141488</doi><orcidid>https://orcid.org/0000-0003-2811-3798</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-07, Vol.819, p.141488, Article 141488
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2564175669
source ScienceDirect Journals (5 years ago - present)
subjects Composite materials
Creep rate
Creep strength
High temperature
Mechanical properties
Metal matrix composites
Powder metallurgy
Refractory materials
Room temperature
Silicides
Silicon
Steady state creep
Tensile strength
Titanium base alloys
Zirconium compounds
title Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20mechanical%20properties%20of%20the%20titanium%20matrix%20composites%20based%20on%20Ti6Al4V-ZrB2-(Si)%20system&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Jiang,%20Shan&rft.date=2021-07-05&rft.volume=819&rft.spage=141488&rft.pages=141488-&rft.artnum=141488&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.141488&rft_dat=%3Cproquest_cross%3E2564175669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564175669&rft_id=info:pmid/&rft_els_id=S0921509321007577&rfr_iscdi=true