Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system
In this work, series of Ti matrix composites based on the Ti6Al4V-ZrB2-(Si) system were successfully fabricated through powder metallurgy. The room-temperature tensile strengths were significantly enhanced to 1063 MPa and 1185 MPa with 4.5 wt% and 9 wt% ZrB2 addition, respectively. The high-temperat...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-07, Vol.819, p.141488, Article 141488 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 141488 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 819 |
creator | Jiang, Shan An, Qi Cui, Xiping Xiang, Xuelian Huang, Lujun Zhang, Rui Sun, Yuan Geng, Lin |
description | In this work, series of Ti matrix composites based on the Ti6Al4V-ZrB2-(Si) system were successfully fabricated through powder metallurgy. The room-temperature tensile strengths were significantly enhanced to 1063 MPa and 1185 MPa with 4.5 wt% and 9 wt% ZrB2 addition, respectively. The high-temperature tensile strength was enhanced to 501 MPa (600 °C) and 327 MPa (700 °C) for Ti64-4.5 wt%ZrB2 composite, and 693 MPa (600 °C) and 422 MPa (700 °C) for Ti64-9 wt%ZrB2 composite. As for the creep resistance, the Ti64-9 wt%ZrB2 composite exhibited the lowest steady-state creep rate of (4.88 × 10-7 s-1) and the longest creep time to rupture (6.28 h). Adding Si to construct the two-scale network structure further enhanced the mechanical properties, especially at high temperature, the strengths were elevated by 26% and 39% for the Ti64-4.5 wt%ZrB2-1wt.%Si composite at 600 °C and 700 °C, respectively, and the creep resistance was markedly enhanced with the help of the second-scale silicide reinforcement network. |
doi_str_mv | 10.1016/j.msea.2021.141488 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564175669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321007577</els_id><sourcerecordid>2564175669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-722d94b097d0990b63af492ad4636f394ada36b89c1f8cd91d39555a815317323</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAjS5mzGsyE3CjxapQcGF14SZkkgzN0HmYpGL_vSnj2tWFe8859_ABcIlRjhHmt23eBatyggjOMcOsqo7ADFclzZig_BjMkCA4K5Cgp-AshBYhhBkqZsAtVe2dVtENPVS9gZ3VG9WnzRaOfhitj84GODQwbiyMLqbbroOdit79QD104xBcTIpaBWtgClk7fr9lH9mnfyDZ9Zu7gWEfou3OwUmjtsFe_M05eF8-rhfP2er16WVxv8o0JVXMSkKMYDUSpUFCoJpT1TBBlGGc8oYKpoyivK6Exk2ljcCGiqIoVIULiktK6BxcTbmp_tfOhijbYef79FKSgjNcFpyLpCKTSvshBG8bOXrXKb-XGMkDUtnKA1J5QConpMl0N5ls6v_trJdBO9tra5y3OkozuP_svyk5fjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564175669</pqid></control><display><type>article</type><title>Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jiang, Shan ; An, Qi ; Cui, Xiping ; Xiang, Xuelian ; Huang, Lujun ; Zhang, Rui ; Sun, Yuan ; Geng, Lin</creator><creatorcontrib>Jiang, Shan ; An, Qi ; Cui, Xiping ; Xiang, Xuelian ; Huang, Lujun ; Zhang, Rui ; Sun, Yuan ; Geng, Lin</creatorcontrib><description>In this work, series of Ti matrix composites based on the Ti6Al4V-ZrB2-(Si) system were successfully fabricated through powder metallurgy. The room-temperature tensile strengths were significantly enhanced to 1063 MPa and 1185 MPa with 4.5 wt% and 9 wt% ZrB2 addition, respectively. The high-temperature tensile strength was enhanced to 501 MPa (600 °C) and 327 MPa (700 °C) for Ti64-4.5 wt%ZrB2 composite, and 693 MPa (600 °C) and 422 MPa (700 °C) for Ti64-9 wt%ZrB2 composite. As for the creep resistance, the Ti64-9 wt%ZrB2 composite exhibited the lowest steady-state creep rate of (4.88 × 10-7 s-1) and the longest creep time to rupture (6.28 h). Adding Si to construct the two-scale network structure further enhanced the mechanical properties, especially at high temperature, the strengths were elevated by 26% and 39% for the Ti64-4.5 wt%ZrB2-1wt.%Si composite at 600 °C and 700 °C, respectively, and the creep resistance was markedly enhanced with the help of the second-scale silicide reinforcement network.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.141488</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Composite materials ; Creep rate ; Creep strength ; High temperature ; Mechanical properties ; Metal matrix composites ; Powder metallurgy ; Refractory materials ; Room temperature ; Silicides ; Silicon ; Steady state creep ; Tensile strength ; Titanium base alloys ; Zirconium compounds</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-07, Vol.819, p.141488, Article 141488</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-722d94b097d0990b63af492ad4636f394ada36b89c1f8cd91d39555a815317323</citedby><cites>FETCH-LOGICAL-c328t-722d94b097d0990b63af492ad4636f394ada36b89c1f8cd91d39555a815317323</cites><orcidid>0000-0003-2811-3798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2021.141488$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>An, Qi</creatorcontrib><creatorcontrib>Cui, Xiping</creatorcontrib><creatorcontrib>Xiang, Xuelian</creatorcontrib><creatorcontrib>Huang, Lujun</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Sun, Yuan</creatorcontrib><creatorcontrib>Geng, Lin</creatorcontrib><title>Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>In this work, series of Ti matrix composites based on the Ti6Al4V-ZrB2-(Si) system were successfully fabricated through powder metallurgy. The room-temperature tensile strengths were significantly enhanced to 1063 MPa and 1185 MPa with 4.5 wt% and 9 wt% ZrB2 addition, respectively. The high-temperature tensile strength was enhanced to 501 MPa (600 °C) and 327 MPa (700 °C) for Ti64-4.5 wt%ZrB2 composite, and 693 MPa (600 °C) and 422 MPa (700 °C) for Ti64-9 wt%ZrB2 composite. As for the creep resistance, the Ti64-9 wt%ZrB2 composite exhibited the lowest steady-state creep rate of (4.88 × 10-7 s-1) and the longest creep time to rupture (6.28 h). Adding Si to construct the two-scale network structure further enhanced the mechanical properties, especially at high temperature, the strengths were elevated by 26% and 39% for the Ti64-4.5 wt%ZrB2-1wt.%Si composite at 600 °C and 700 °C, respectively, and the creep resistance was markedly enhanced with the help of the second-scale silicide reinforcement network.</description><subject>Composite materials</subject><subject>Creep rate</subject><subject>Creep strength</subject><subject>High temperature</subject><subject>Mechanical properties</subject><subject>Metal matrix composites</subject><subject>Powder metallurgy</subject><subject>Refractory materials</subject><subject>Room temperature</subject><subject>Silicides</subject><subject>Silicon</subject><subject>Steady state creep</subject><subject>Tensile strength</subject><subject>Titanium base alloys</subject><subject>Zirconium compounds</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAjS5mzGsyE3CjxapQcGF14SZkkgzN0HmYpGL_vSnj2tWFe8859_ABcIlRjhHmt23eBatyggjOMcOsqo7ADFclzZig_BjMkCA4K5Cgp-AshBYhhBkqZsAtVe2dVtENPVS9gZ3VG9WnzRaOfhitj84GODQwbiyMLqbbroOdit79QD104xBcTIpaBWtgClk7fr9lH9mnfyDZ9Zu7gWEfou3OwUmjtsFe_M05eF8-rhfP2er16WVxv8o0JVXMSkKMYDUSpUFCoJpT1TBBlGGc8oYKpoyivK6Exk2ljcCGiqIoVIULiktK6BxcTbmp_tfOhijbYef79FKSgjNcFpyLpCKTSvshBG8bOXrXKb-XGMkDUtnKA1J5QConpMl0N5ls6v_trJdBO9tra5y3OkozuP_svyk5fjU</recordid><startdate>20210705</startdate><enddate>20210705</enddate><creator>Jiang, Shan</creator><creator>An, Qi</creator><creator>Cui, Xiping</creator><creator>Xiang, Xuelian</creator><creator>Huang, Lujun</creator><creator>Zhang, Rui</creator><creator>Sun, Yuan</creator><creator>Geng, Lin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2811-3798</orcidid></search><sort><creationdate>20210705</creationdate><title>Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system</title><author>Jiang, Shan ; An, Qi ; Cui, Xiping ; Xiang, Xuelian ; Huang, Lujun ; Zhang, Rui ; Sun, Yuan ; Geng, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-722d94b097d0990b63af492ad4636f394ada36b89c1f8cd91d39555a815317323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Composite materials</topic><topic>Creep rate</topic><topic>Creep strength</topic><topic>High temperature</topic><topic>Mechanical properties</topic><topic>Metal matrix composites</topic><topic>Powder metallurgy</topic><topic>Refractory materials</topic><topic>Room temperature</topic><topic>Silicides</topic><topic>Silicon</topic><topic>Steady state creep</topic><topic>Tensile strength</topic><topic>Titanium base alloys</topic><topic>Zirconium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>An, Qi</creatorcontrib><creatorcontrib>Cui, Xiping</creatorcontrib><creatorcontrib>Xiang, Xuelian</creatorcontrib><creatorcontrib>Huang, Lujun</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Sun, Yuan</creatorcontrib><creatorcontrib>Geng, Lin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Shan</au><au>An, Qi</au><au>Cui, Xiping</au><au>Xiang, Xuelian</au><au>Huang, Lujun</au><au>Zhang, Rui</au><au>Sun, Yuan</au><au>Geng, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-07-05</date><risdate>2021</risdate><volume>819</volume><spage>141488</spage><pages>141488-</pages><artnum>141488</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>In this work, series of Ti matrix composites based on the Ti6Al4V-ZrB2-(Si) system were successfully fabricated through powder metallurgy. The room-temperature tensile strengths were significantly enhanced to 1063 MPa and 1185 MPa with 4.5 wt% and 9 wt% ZrB2 addition, respectively. The high-temperature tensile strength was enhanced to 501 MPa (600 °C) and 327 MPa (700 °C) for Ti64-4.5 wt%ZrB2 composite, and 693 MPa (600 °C) and 422 MPa (700 °C) for Ti64-9 wt%ZrB2 composite. As for the creep resistance, the Ti64-9 wt%ZrB2 composite exhibited the lowest steady-state creep rate of (4.88 × 10-7 s-1) and the longest creep time to rupture (6.28 h). Adding Si to construct the two-scale network structure further enhanced the mechanical properties, especially at high temperature, the strengths were elevated by 26% and 39% for the Ti64-4.5 wt%ZrB2-1wt.%Si composite at 600 °C and 700 °C, respectively, and the creep resistance was markedly enhanced with the help of the second-scale silicide reinforcement network.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.141488</doi><orcidid>https://orcid.org/0000-0003-2811-3798</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-07, Vol.819, p.141488, Article 141488 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2564175669 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Composite materials Creep rate Creep strength High temperature Mechanical properties Metal matrix composites Powder metallurgy Refractory materials Room temperature Silicides Silicon Steady state creep Tensile strength Titanium base alloys Zirconium compounds |
title | Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20mechanical%20properties%20of%20the%20titanium%20matrix%20composites%20based%20on%20Ti6Al4V-ZrB2-(Si)%20system&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Jiang,%20Shan&rft.date=2021-07-05&rft.volume=819&rft.spage=141488&rft.pages=141488-&rft.artnum=141488&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.141488&rft_dat=%3Cproquest_cross%3E2564175669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564175669&rft_id=info:pmid/&rft_els_id=S0921509321007577&rfr_iscdi=true |