Patch-Based Cervical Cancer Segmentation using Distance from Boundary of Tissue
Pathological diagnosis is used for examining cancer in detail, and its automation is in demand. To automatically segment each cancer area, a patch-based approach is usually used since a Whole Slide Image (WSI) is huge. However, this approach loses the global information needed to distinguish between...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Araki, Kengo Rokutan-Kurata, Mariyo Terada, Kazuhiro Yoshizawa, Akihiko Bise, Ryoma |
description | Pathological diagnosis is used for examining cancer in detail, and its automation is in demand. To automatically segment each cancer area, a patch-based approach is usually used since a Whole Slide Image (WSI) is huge. However, this approach loses the global information needed to distinguish between classes. In this paper, we utilized the Distance from the Boundary of tissue (DfB), which is global information that can be extracted from the original image. We experimentally applied our method to the three-class classification of cervical cancer, and found that it improved the total performance compared with the conventional method. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2564174694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564174694</sourcerecordid><originalsourceid>FETCH-proquest_journals_25641746943</originalsourceid><addsrcrecordid>eNqNytEKgjAUgOERBEn5Dge6FnROrVut6K6g7mXo0Sa61c4W9PYV9ABd_RffP2MBT9Mk2gjOFywkGuI45nnBsywN2OksXXOLSknYQoX2qRo5QiV1gxYu2E-onXTKaPCkdA87Re6L0FkzQWm8bqV9gengqog8rti8kyNh-OuSrQ_7a3WM7tY8PJKrB-Ot_lDNs1wkhci3Iv3vegPlgj5O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564174694</pqid></control><display><type>article</type><title>Patch-Based Cervical Cancer Segmentation using Distance from Boundary of Tissue</title><source>Free E- Journals</source><creator>Araki, Kengo ; Rokutan-Kurata, Mariyo ; Terada, Kazuhiro ; Yoshizawa, Akihiko ; Bise, Ryoma</creator><creatorcontrib>Araki, Kengo ; Rokutan-Kurata, Mariyo ; Terada, Kazuhiro ; Yoshizawa, Akihiko ; Bise, Ryoma</creatorcontrib><description>Pathological diagnosis is used for examining cancer in detail, and its automation is in demand. To automatically segment each cancer area, a patch-based approach is usually used since a Whole Slide Image (WSI) is huge. However, this approach loses the global information needed to distinguish between classes. In this paper, we utilized the Distance from the Boundary of tissue (DfB), which is global information that can be extracted from the original image. We experimentally applied our method to the three-class classification of cervical cancer, and found that it improved the total performance compared with the conventional method.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cancer ; Cervical cancer ; Image classification ; Image segmentation ; Medical imaging</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Araki, Kengo</creatorcontrib><creatorcontrib>Rokutan-Kurata, Mariyo</creatorcontrib><creatorcontrib>Terada, Kazuhiro</creatorcontrib><creatorcontrib>Yoshizawa, Akihiko</creatorcontrib><creatorcontrib>Bise, Ryoma</creatorcontrib><title>Patch-Based Cervical Cancer Segmentation using Distance from Boundary of Tissue</title><title>arXiv.org</title><description>Pathological diagnosis is used for examining cancer in detail, and its automation is in demand. To automatically segment each cancer area, a patch-based approach is usually used since a Whole Slide Image (WSI) is huge. However, this approach loses the global information needed to distinguish between classes. In this paper, we utilized the Distance from the Boundary of tissue (DfB), which is global information that can be extracted from the original image. We experimentally applied our method to the three-class classification of cervical cancer, and found that it improved the total performance compared with the conventional method.</description><subject>Cancer</subject><subject>Cervical cancer</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNytEKgjAUgOERBEn5Dge6FnROrVut6K6g7mXo0Sa61c4W9PYV9ABd_RffP2MBT9Mk2gjOFywkGuI45nnBsywN2OksXXOLSknYQoX2qRo5QiV1gxYu2E-onXTKaPCkdA87Re6L0FkzQWm8bqV9gengqog8rti8kyNh-OuSrQ_7a3WM7tY8PJKrB-Ot_lDNs1wkhci3Iv3vegPlgj5O</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Araki, Kengo</creator><creator>Rokutan-Kurata, Mariyo</creator><creator>Terada, Kazuhiro</creator><creator>Yoshizawa, Akihiko</creator><creator>Bise, Ryoma</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210819</creationdate><title>Patch-Based Cervical Cancer Segmentation using Distance from Boundary of Tissue</title><author>Araki, Kengo ; Rokutan-Kurata, Mariyo ; Terada, Kazuhiro ; Yoshizawa, Akihiko ; Bise, Ryoma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25641746943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cancer</topic><topic>Cervical cancer</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Araki, Kengo</creatorcontrib><creatorcontrib>Rokutan-Kurata, Mariyo</creatorcontrib><creatorcontrib>Terada, Kazuhiro</creatorcontrib><creatorcontrib>Yoshizawa, Akihiko</creatorcontrib><creatorcontrib>Bise, Ryoma</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araki, Kengo</au><au>Rokutan-Kurata, Mariyo</au><au>Terada, Kazuhiro</au><au>Yoshizawa, Akihiko</au><au>Bise, Ryoma</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Patch-Based Cervical Cancer Segmentation using Distance from Boundary of Tissue</atitle><jtitle>arXiv.org</jtitle><date>2021-08-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Pathological diagnosis is used for examining cancer in detail, and its automation is in demand. To automatically segment each cancer area, a patch-based approach is usually used since a Whole Slide Image (WSI) is huge. However, this approach loses the global information needed to distinguish between classes. In this paper, we utilized the Distance from the Boundary of tissue (DfB), which is global information that can be extracted from the original image. We experimentally applied our method to the three-class classification of cervical cancer, and found that it improved the total performance compared with the conventional method.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2564174694 |
source | Free E- Journals |
subjects | Cancer Cervical cancer Image classification Image segmentation Medical imaging |
title | Patch-Based Cervical Cancer Segmentation using Distance from Boundary of Tissue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Patch-Based%20Cervical%20Cancer%20Segmentation%20using%20Distance%20from%20Boundary%20of%20Tissue&rft.jtitle=arXiv.org&rft.au=Araki,%20Kengo&rft.date=2021-08-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2564174694%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564174694&rft_id=info:pmid/&rfr_iscdi=true |