Poincaré Inequality on Subanalytic Sets
Let Ω be a subanalytic connected bounded open subset of R n , with possibly singular boundary. We show that given p ∈ [ 1 , ∞ ) , there is a constant C such that for any u ∈ W 1 , p ( Ω ) we have | | u - u Ω | | L p ≤ C | | ∇ u | | L p , where we have set u Ω : = 1 | Ω | ∫ Ω u .
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021-10, Vol.31 (10), p.10464-10472 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10472 |
---|---|
container_issue | 10 |
container_start_page | 10464 |
container_title | The Journal of Geometric Analysis |
container_volume | 31 |
creator | Valette, Anna Valette, Guillaume |
description | Let
Ω
be a subanalytic connected bounded open subset of
R
n
, with possibly singular boundary. We show that given
p
∈
[
1
,
∞
)
, there is a constant
C
such that for any
u
∈
W
1
,
p
(
Ω
)
we have
|
|
u
-
u
Ω
|
|
L
p
≤
C
|
|
∇
u
|
|
L
p
,
where we have set
u
Ω
:
=
1
|
Ω
|
∫
Ω
u
. |
doi_str_mv | 10.1007/s12220-021-00652-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2564151017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707338862</galeid><sourcerecordid>A707338862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-bf885a4853ddd8bff0110221575e869ec1b415883d50a882182b43cea16168b13</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAjZvUe5NJJl2W4k-hoFAFdyGTyZQp05k2mYH2kXwOX8zoCO7kLu4P57scDiHXCBMEyO4CMsaAAkMKIAWjhxMyQiGmcWXvp3EGAVROmTwnFyFsAFLJ02xEbl_aqrHGf34ki8bte1NX3TFpm2TV56Yx9bGrbLJyXbgkZ6Wpg7v67WPy9nD_On-iy-fHxXy2pDYF1tG8VEqYVAleFIXKyxIQgTEUmXBKTp3FPEWhFC8EGKUYKpan3DqDEqXKkY_JzfB359t970KnN23vo5OgmZCRRcAsqiaDam1qp6umbDtvbKzCbSvbNq6s4n2WQca5UpJFgA2A9W0I3pV656ut8UeNoL8j1EOEOkaofyLUhwjxAQpR3Kyd__PyD_UFqf9yWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564151017</pqid></control><display><type>article</type><title>Poincaré Inequality on Subanalytic Sets</title><source>SpringerNature Journals</source><creator>Valette, Anna ; Valette, Guillaume</creator><creatorcontrib>Valette, Anna ; Valette, Guillaume</creatorcontrib><description>Let
Ω
be a subanalytic connected bounded open subset of
R
n
, with possibly singular boundary. We show that given
p
∈
[
1
,
∞
)
, there is a constant
C
such that for any
u
∈
W
1
,
p
(
Ω
)
we have
|
|
u
-
u
Ω
|
|
L
p
≤
C
|
|
∇
u
|
|
L
p
,
where we have set
u
Ω
:
=
1
|
Ω
|
∫
Ω
u
.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-021-00652-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Equality ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of Geometric Analysis, 2021-10, Vol.31 (10), p.10464-10472</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-bf885a4853ddd8bff0110221575e869ec1b415883d50a882182b43cea16168b13</citedby><cites>FETCH-LOGICAL-c402t-bf885a4853ddd8bff0110221575e869ec1b415883d50a882182b43cea16168b13</cites><orcidid>0000-0002-0414-2968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-021-00652-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-021-00652-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Valette, Anna</creatorcontrib><creatorcontrib>Valette, Guillaume</creatorcontrib><title>Poincaré Inequality on Subanalytic Sets</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>Let
Ω
be a subanalytic connected bounded open subset of
R
n
, with possibly singular boundary. We show that given
p
∈
[
1
,
∞
)
, there is a constant
C
such that for any
u
∈
W
1
,
p
(
Ω
)
we have
|
|
u
-
u
Ω
|
|
L
p
≤
C
|
|
∇
u
|
|
L
p
,
where we have set
u
Ω
:
=
1
|
Ω
|
∫
Ω
u
.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Equality</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4GrAjZvUe5NJJl2W4k-hoFAFdyGTyZQp05k2mYH2kXwOX8zoCO7kLu4P57scDiHXCBMEyO4CMsaAAkMKIAWjhxMyQiGmcWXvp3EGAVROmTwnFyFsAFLJ02xEbl_aqrHGf34ki8bte1NX3TFpm2TV56Yx9bGrbLJyXbgkZ6Wpg7v67WPy9nD_On-iy-fHxXy2pDYF1tG8VEqYVAleFIXKyxIQgTEUmXBKTp3FPEWhFC8EGKUYKpan3DqDEqXKkY_JzfB359t970KnN23vo5OgmZCRRcAsqiaDam1qp6umbDtvbKzCbSvbNq6s4n2WQca5UpJFgA2A9W0I3pV656ut8UeNoL8j1EOEOkaofyLUhwjxAQpR3Kyd__PyD_UFqf9yWA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Valette, Anna</creator><creator>Valette, Guillaume</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-0414-2968</orcidid></search><sort><creationdate>20211001</creationdate><title>Poincaré Inequality on Subanalytic Sets</title><author>Valette, Anna ; Valette, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-bf885a4853ddd8bff0110221575e869ec1b415883d50a882182b43cea16168b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Equality</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valette, Anna</creatorcontrib><creatorcontrib>Valette, Guillaume</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valette, Anna</au><au>Valette, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poincaré Inequality on Subanalytic Sets</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>10</issue><spage>10464</spage><epage>10472</epage><pages>10464-10472</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>Let
Ω
be a subanalytic connected bounded open subset of
R
n
, with possibly singular boundary. We show that given
p
∈
[
1
,
∞
)
, there is a constant
C
such that for any
u
∈
W
1
,
p
(
Ω
)
we have
|
|
u
-
u
Ω
|
|
L
p
≤
C
|
|
∇
u
|
|
L
p
,
where we have set
u
Ω
:
=
1
|
Ω
|
∫
Ω
u
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-021-00652-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0414-2968</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of Geometric Analysis, 2021-10, Vol.31 (10), p.10464-10472 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2564151017 |
source | SpringerNature Journals |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Equality Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Mathematics Mathematics and Statistics |
title | Poincaré Inequality on Subanalytic Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poincar%C3%A9%20Inequality%20on%20Subanalytic%20Sets&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Valette,%20Anna&rft.date=2021-10-01&rft.volume=31&rft.issue=10&rft.spage=10464&rft.epage=10472&rft.pages=10464-10472&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-021-00652-x&rft_dat=%3Cgale_proqu%3EA707338862%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564151017&rft_id=info:pmid/&rft_galeid=A707338862&rfr_iscdi=true |