Poincaré Inequality on Subanalytic Sets

Let Ω be a subanalytic connected bounded open subset of R n , with possibly singular boundary. We show that given p ∈ [ 1 , ∞ ) , there is a constant C such that for any u ∈ W 1 , p ( Ω ) we have | | u - u Ω | | L p ≤ C | | ∇ u | | L p , where we have set u Ω : = 1 | Ω | ∫ Ω u .

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021-10, Vol.31 (10), p.10464-10472
Hauptverfasser: Valette, Anna, Valette, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10472
container_issue 10
container_start_page 10464
container_title The Journal of Geometric Analysis
container_volume 31
creator Valette, Anna
Valette, Guillaume
description Let Ω be a subanalytic connected bounded open subset of R n , with possibly singular boundary. We show that given p ∈ [ 1 , ∞ ) , there is a constant C such that for any u ∈ W 1 , p ( Ω ) we have | | u - u Ω | | L p ≤ C | | ∇ u | | L p , where we have set u Ω : = 1 | Ω | ∫ Ω u .
doi_str_mv 10.1007/s12220-021-00652-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2564151017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707338862</galeid><sourcerecordid>A707338862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-bf885a4853ddd8bff0110221575e869ec1b415883d50a882182b43cea16168b13</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAjZvUe5NJJl2W4k-hoFAFdyGTyZQp05k2mYH2kXwOX8zoCO7kLu4P57scDiHXCBMEyO4CMsaAAkMKIAWjhxMyQiGmcWXvp3EGAVROmTwnFyFsAFLJ02xEbl_aqrHGf34ki8bte1NX3TFpm2TV56Yx9bGrbLJyXbgkZ6Wpg7v67WPy9nD_On-iy-fHxXy2pDYF1tG8VEqYVAleFIXKyxIQgTEUmXBKTp3FPEWhFC8EGKUYKpan3DqDEqXKkY_JzfB359t970KnN23vo5OgmZCRRcAsqiaDam1qp6umbDtvbKzCbSvbNq6s4n2WQca5UpJFgA2A9W0I3pV656ut8UeNoL8j1EOEOkaofyLUhwjxAQpR3Kyd__PyD_UFqf9yWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564151017</pqid></control><display><type>article</type><title>Poincaré Inequality on Subanalytic Sets</title><source>SpringerNature Journals</source><creator>Valette, Anna ; Valette, Guillaume</creator><creatorcontrib>Valette, Anna ; Valette, Guillaume</creatorcontrib><description>Let Ω be a subanalytic connected bounded open subset of R n , with possibly singular boundary. We show that given p ∈ [ 1 , ∞ ) , there is a constant C such that for any u ∈ W 1 , p ( Ω ) we have | | u - u Ω | | L p ≤ C | | ∇ u | | L p , where we have set u Ω : = 1 | Ω | ∫ Ω u .</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-021-00652-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Equality ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of Geometric Analysis, 2021-10, Vol.31 (10), p.10464-10472</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-bf885a4853ddd8bff0110221575e869ec1b415883d50a882182b43cea16168b13</citedby><cites>FETCH-LOGICAL-c402t-bf885a4853ddd8bff0110221575e869ec1b415883d50a882182b43cea16168b13</cites><orcidid>0000-0002-0414-2968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-021-00652-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-021-00652-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Valette, Anna</creatorcontrib><creatorcontrib>Valette, Guillaume</creatorcontrib><title>Poincaré Inequality on Subanalytic Sets</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>Let Ω be a subanalytic connected bounded open subset of R n , with possibly singular boundary. We show that given p ∈ [ 1 , ∞ ) , there is a constant C such that for any u ∈ W 1 , p ( Ω ) we have | | u - u Ω | | L p ≤ C | | ∇ u | | L p , where we have set u Ω : = 1 | Ω | ∫ Ω u .</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Equality</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4GrAjZvUe5NJJl2W4k-hoFAFdyGTyZQp05k2mYH2kXwOX8zoCO7kLu4P57scDiHXCBMEyO4CMsaAAkMKIAWjhxMyQiGmcWXvp3EGAVROmTwnFyFsAFLJ02xEbl_aqrHGf34ki8bte1NX3TFpm2TV56Yx9bGrbLJyXbgkZ6Wpg7v67WPy9nD_On-iy-fHxXy2pDYF1tG8VEqYVAleFIXKyxIQgTEUmXBKTp3FPEWhFC8EGKUYKpan3DqDEqXKkY_JzfB359t970KnN23vo5OgmZCRRcAsqiaDam1qp6umbDtvbKzCbSvbNq6s4n2WQca5UpJFgA2A9W0I3pV656ut8UeNoL8j1EOEOkaofyLUhwjxAQpR3Kyd__PyD_UFqf9yWA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Valette, Anna</creator><creator>Valette, Guillaume</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-0414-2968</orcidid></search><sort><creationdate>20211001</creationdate><title>Poincaré Inequality on Subanalytic Sets</title><author>Valette, Anna ; Valette, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-bf885a4853ddd8bff0110221575e869ec1b415883d50a882182b43cea16168b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Equality</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valette, Anna</creatorcontrib><creatorcontrib>Valette, Guillaume</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valette, Anna</au><au>Valette, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poincaré Inequality on Subanalytic Sets</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>10</issue><spage>10464</spage><epage>10472</epage><pages>10464-10472</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>Let Ω be a subanalytic connected bounded open subset of R n , with possibly singular boundary. We show that given p ∈ [ 1 , ∞ ) , there is a constant C such that for any u ∈ W 1 , p ( Ω ) we have | | u - u Ω | | L p ≤ C | | ∇ u | | L p , where we have set u Ω : = 1 | Ω | ∫ Ω u .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-021-00652-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0414-2968</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2021-10, Vol.31 (10), p.10464-10472
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2564151017
source SpringerNature Journals
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Equality
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
title Poincaré Inequality on Subanalytic Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poincar%C3%A9%20Inequality%20on%20Subanalytic%20Sets&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Valette,%20Anna&rft.date=2021-10-01&rft.volume=31&rft.issue=10&rft.spage=10464&rft.epage=10472&rft.pages=10464-10472&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-021-00652-x&rft_dat=%3Cgale_proqu%3EA707338862%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564151017&rft_id=info:pmid/&rft_galeid=A707338862&rfr_iscdi=true