Convolutional Neural Network (CNN) for Automatic Skin Cancer Classification System
Skin cancer is a type of cancer that grows in the skin tissue, which can cause damage to the surrounding tissue, disability, and even death. In Indonesia, skin cancer is the third leading for most cancer cases after cervical and breast cancer. The accuracy of diagnosis and the early proper treatment...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2020-12, Vol.982 (1), p.12005 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12005 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 982 |
creator | Fu'adah, Yunendah Nur Pratiwi, NK Caecar Pramudito, Muhammad Adnan Ibrahim, Nur |
description | Skin cancer is a type of cancer that grows in the skin tissue, which can cause damage to the surrounding tissue, disability, and even death. In Indonesia, skin cancer is the third leading for most cancer cases after cervical and breast cancer. The accuracy of diagnosis and the early proper treatment can minimize and control the harmful effects of skin cancer. Due to the similar shape of the lesion between skin cancer and benign tumor lesions, physicians consuming much more time in diagnosing these lesions. The system was developed in this study could identify skin cancer and benign tumor lesions automatically using the Convolutional Neural Network (CNN). The proposed model consists of three hidden layers with an output channel of 16,32, and 64 for each layer respectively. The proposed model uses several optimizers such as SGD, RMSprop, Adam, and Nadam with a learning rate of 0.001. Adam optimizer provides the best performance with an accuracy value of 99% in identifying the skin lesions from the ISIC dataset into 4 classes, namely dermatofibroma, nevus pigmentosus, squamous cell carcinoma, and melanoma. The results obtained outperform the performance of the existing skin cancer classification system. |
doi_str_mv | 10.1088/1757-899X/982/1/012005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2564130566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564130566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3225-6479de28ff0ec69be80bbbd3f26d2cc1ee17ae599a5daa6aba0c23c1cadd52ba3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQLezIvaJG3S9nIUv2BOcArehTRNIFvX1KRV9u9trUwEwatz4DzvC-cB4ByjK4zSNMQJTYI0y17DLCUhDhEmCNEDMNkfDvd7io_BifdrhFgSx2gCnnJbv9uqa42tRQWXqnNfo_2wbgNn-XJ5CbV1cN61ditaI-FqY2qYi1oqB_NKeG-0kWLIw9XOt2p7Co60qLw6-55T8HJz_ZzfBYvH2_t8vghkRAgNWJxkpSKp1khJlhUqRUVRlJEmrCRSYqVwIhTNMkFLIZgoBJIkkliKsqSkENEUXIy9jbNvnfItX9vO9V94TiiLcYQoYz3FRko6671TmjfObIXbcYz44I8Pavigiff-OOajvz44G4PGNj_ND6vrXxhvSt2j5A_0n_5PGjWApQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564130566</pqid></control><display><type>article</type><title>Convolutional Neural Network (CNN) for Automatic Skin Cancer Classification System</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Fu'adah, Yunendah Nur ; Pratiwi, NK Caecar ; Pramudito, Muhammad Adnan ; Ibrahim, Nur</creator><creatorcontrib>Fu'adah, Yunendah Nur ; Pratiwi, NK Caecar ; Pramudito, Muhammad Adnan ; Ibrahim, Nur</creatorcontrib><description>Skin cancer is a type of cancer that grows in the skin tissue, which can cause damage to the surrounding tissue, disability, and even death. In Indonesia, skin cancer is the third leading for most cancer cases after cervical and breast cancer. The accuracy of diagnosis and the early proper treatment can minimize and control the harmful effects of skin cancer. Due to the similar shape of the lesion between skin cancer and benign tumor lesions, physicians consuming much more time in diagnosing these lesions. The system was developed in this study could identify skin cancer and benign tumor lesions automatically using the Convolutional Neural Network (CNN). The proposed model consists of three hidden layers with an output channel of 16,32, and 64 for each layer respectively. The proposed model uses several optimizers such as SGD, RMSprop, Adam, and Nadam with a learning rate of 0.001. Adam optimizer provides the best performance with an accuracy value of 99% in identifying the skin lesions from the ISIC dataset into 4 classes, namely dermatofibroma, nevus pigmentosus, squamous cell carcinoma, and melanoma. The results obtained outperform the performance of the existing skin cancer classification system.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/982/1/012005</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Artificial neural networks ; Classification ; Lesions ; Neural networks ; Physicians ; Skin ; Skin cancer ; Tumors</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-12, Vol.982 (1), p.12005</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3225-6479de28ff0ec69be80bbbd3f26d2cc1ee17ae599a5daa6aba0c23c1cadd52ba3</citedby><cites>FETCH-LOGICAL-c3225-6479de28ff0ec69be80bbbd3f26d2cc1ee17ae599a5daa6aba0c23c1cadd52ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/982/1/012005/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Fu'adah, Yunendah Nur</creatorcontrib><creatorcontrib>Pratiwi, NK Caecar</creatorcontrib><creatorcontrib>Pramudito, Muhammad Adnan</creatorcontrib><creatorcontrib>Ibrahim, Nur</creatorcontrib><title>Convolutional Neural Network (CNN) for Automatic Skin Cancer Classification System</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Skin cancer is a type of cancer that grows in the skin tissue, which can cause damage to the surrounding tissue, disability, and even death. In Indonesia, skin cancer is the third leading for most cancer cases after cervical and breast cancer. The accuracy of diagnosis and the early proper treatment can minimize and control the harmful effects of skin cancer. Due to the similar shape of the lesion between skin cancer and benign tumor lesions, physicians consuming much more time in diagnosing these lesions. The system was developed in this study could identify skin cancer and benign tumor lesions automatically using the Convolutional Neural Network (CNN). The proposed model consists of three hidden layers with an output channel of 16,32, and 64 for each layer respectively. The proposed model uses several optimizers such as SGD, RMSprop, Adam, and Nadam with a learning rate of 0.001. Adam optimizer provides the best performance with an accuracy value of 99% in identifying the skin lesions from the ISIC dataset into 4 classes, namely dermatofibroma, nevus pigmentosus, squamous cell carcinoma, and melanoma. The results obtained outperform the performance of the existing skin cancer classification system.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Lesions</subject><subject>Neural networks</subject><subject>Physicians</subject><subject>Skin</subject><subject>Skin cancer</subject><subject>Tumors</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQLezIvaJG3S9nIUv2BOcArehTRNIFvX1KRV9u9trUwEwatz4DzvC-cB4ByjK4zSNMQJTYI0y17DLCUhDhEmCNEDMNkfDvd7io_BifdrhFgSx2gCnnJbv9uqa42tRQWXqnNfo_2wbgNn-XJ5CbV1cN61ditaI-FqY2qYi1oqB_NKeG-0kWLIw9XOt2p7Co60qLw6-55T8HJz_ZzfBYvH2_t8vghkRAgNWJxkpSKp1khJlhUqRUVRlJEmrCRSYqVwIhTNMkFLIZgoBJIkkliKsqSkENEUXIy9jbNvnfItX9vO9V94TiiLcYQoYz3FRko6671TmjfObIXbcYz44I8Pavigiff-OOajvz44G4PGNj_ND6vrXxhvSt2j5A_0n_5PGjWApQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Fu'adah, Yunendah Nur</creator><creator>Pratiwi, NK Caecar</creator><creator>Pramudito, Muhammad Adnan</creator><creator>Ibrahim, Nur</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201201</creationdate><title>Convolutional Neural Network (CNN) for Automatic Skin Cancer Classification System</title><author>Fu'adah, Yunendah Nur ; Pratiwi, NK Caecar ; Pramudito, Muhammad Adnan ; Ibrahim, Nur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3225-6479de28ff0ec69be80bbbd3f26d2cc1ee17ae599a5daa6aba0c23c1cadd52ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Lesions</topic><topic>Neural networks</topic><topic>Physicians</topic><topic>Skin</topic><topic>Skin cancer</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu'adah, Yunendah Nur</creatorcontrib><creatorcontrib>Pratiwi, NK Caecar</creatorcontrib><creatorcontrib>Pramudito, Muhammad Adnan</creatorcontrib><creatorcontrib>Ibrahim, Nur</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu'adah, Yunendah Nur</au><au>Pratiwi, NK Caecar</au><au>Pramudito, Muhammad Adnan</au><au>Ibrahim, Nur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional Neural Network (CNN) for Automatic Skin Cancer Classification System</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>982</volume><issue>1</issue><spage>12005</spage><pages>12005-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Skin cancer is a type of cancer that grows in the skin tissue, which can cause damage to the surrounding tissue, disability, and even death. In Indonesia, skin cancer is the third leading for most cancer cases after cervical and breast cancer. The accuracy of diagnosis and the early proper treatment can minimize and control the harmful effects of skin cancer. Due to the similar shape of the lesion between skin cancer and benign tumor lesions, physicians consuming much more time in diagnosing these lesions. The system was developed in this study could identify skin cancer and benign tumor lesions automatically using the Convolutional Neural Network (CNN). The proposed model consists of three hidden layers with an output channel of 16,32, and 64 for each layer respectively. The proposed model uses several optimizers such as SGD, RMSprop, Adam, and Nadam with a learning rate of 0.001. Adam optimizer provides the best performance with an accuracy value of 99% in identifying the skin lesions from the ISIC dataset into 4 classes, namely dermatofibroma, nevus pigmentosus, squamous cell carcinoma, and melanoma. The results obtained outperform the performance of the existing skin cancer classification system.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/982/1/012005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2020-12, Vol.982 (1), p.12005 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2564130566 |
source | Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Artificial neural networks Classification Lesions Neural networks Physicians Skin Skin cancer Tumors |
title | Convolutional Neural Network (CNN) for Automatic Skin Cancer Classification System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20Neural%20Network%20(CNN)%20for%20Automatic%20Skin%20Cancer%20Classification%20System&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Fu'adah,%20Yunendah%20Nur&rft.date=2020-12-01&rft.volume=982&rft.issue=1&rft.spage=12005&rft.pages=12005-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/982/1/012005&rft_dat=%3Cproquest_iop_j%3E2564130566%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564130566&rft_id=info:pmid/&rfr_iscdi=true |