Convergence of proximal splitting algorithms in CAT(κ) spaces and beyond

In the setting of CAT ( κ ) spaces, common fixed point iterations built from prox mappings (e.g. prox-prox, Krasnoselsky–Mann relaxations, nonlinear projected-gradients) converge locally linearly under the assumption of linear metric subregularity. Linear metric subregularity is in any case necessar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fixed point theory and algorithms for sciences and engineering 2021-12, Vol.2021 (1)
Hauptverfasser: Lauster, Florian, Luke, D. Russell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Fixed point theory and algorithms for sciences and engineering
container_volume 2021
creator Lauster, Florian
Luke, D. Russell
description In the setting of CAT ( κ ) spaces, common fixed point iterations built from prox mappings (e.g. prox-prox, Krasnoselsky–Mann relaxations, nonlinear projected-gradients) converge locally linearly under the assumption of linear metric subregularity. Linear metric subregularity is in any case necessary for linearly convergent fixed point sequences, so the result is tight. To show this, we develop a theory of fixed point mappings that violate the usual assumptions of nonexpansiveness and firm nonexpansiveness in p -uniformly convex spaces.
doi_str_mv 10.1186/s13663-021-00698-0
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2563933286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563933286</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-24b83017289365290cf750859ec53dd6d0a5af34fb2e2ffec6fefd040ab2fa383</originalsourceid><addsrcrecordid>eNpFkE1OwzAQRi0kJKrSC7CyxAYWhvFM7DjLKuKnUiU2ZW05iV1SpUmIUwRX4xCciUCRWM3ie5r55jF2IeFGSqNvoyStSQBKAaAzI-CEzTAlECpBPGOLGHcAgEoSpmrGVnnXvvlh69vS8y7wfuje671reOybehzrdstds-2GenzZR163PF9urr4-r6fclT5y11a88B9dW52z0-Ca6Bd_c86e7-82-aNYPz2s8uVa9IjpKDApDIFM0WSkFWZQhlSBUZkvFVWVrsApFygJBXoMwZc6-FBBAq7A4MjQnF0e905VXw8-jnbXHYZ2OmlRacqI0OiJoiMV-2F6wg__lAT7o8oeVdlJlf1VZYG-Abj7Xk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563933286</pqid></control><display><type>article</type><title>Convergence of proximal splitting algorithms in CAT(κ) spaces and beyond</title><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals - AutoHoldings</source><source>Springer Nature OA Free Journals</source><creator>Lauster, Florian ; Luke, D. Russell</creator><creatorcontrib>Lauster, Florian ; Luke, D. Russell</creatorcontrib><description>In the setting of CAT ( κ ) spaces, common fixed point iterations built from prox mappings (e.g. prox-prox, Krasnoselsky–Mann relaxations, nonlinear projected-gradients) converge locally linearly under the assumption of linear metric subregularity. Linear metric subregularity is in any case necessary for linearly convergent fixed point sequences, so the result is tight. To show this, we develop a theory of fixed point mappings that violate the usual assumptions of nonexpansiveness and firm nonexpansiveness in p -uniformly convex spaces.</description><identifier>EISSN: 2730-5422</identifier><identifier>DOI: 10.1186/s13663-021-00698-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Analysis ; Applications of Mathematics ; Convergence ; Differential Geometry ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Neighborhoods ; Optimization and Real World Applications ; Topology</subject><ispartof>Fixed point theory and algorithms for sciences and engineering, 2021-12, Vol.2021 (1)</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p227t-24b83017289365290cf750859ec53dd6d0a5af34fb2e2ffec6fefd040ab2fa383</cites><orcidid>0000-0002-4508-7360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1186/s13663-021-00698-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1186/s13663-021-00698-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids></links><search><creatorcontrib>Lauster, Florian</creatorcontrib><creatorcontrib>Luke, D. Russell</creatorcontrib><title>Convergence of proximal splitting algorithms in CAT(κ) spaces and beyond</title><title>Fixed point theory and algorithms for sciences and engineering</title><addtitle>Fixed Point Theory Algorithms Sci Eng</addtitle><description>In the setting of CAT ( κ ) spaces, common fixed point iterations built from prox mappings (e.g. prox-prox, Krasnoselsky–Mann relaxations, nonlinear projected-gradients) converge locally linearly under the assumption of linear metric subregularity. Linear metric subregularity is in any case necessary for linearly convergent fixed point sequences, so the result is tight. To show this, we develop a theory of fixed point mappings that violate the usual assumptions of nonexpansiveness and firm nonexpansiveness in p -uniformly convex spaces.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Convergence</subject><subject>Differential Geometry</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neighborhoods</subject><subject>Optimization and Real World Applications</subject><subject>Topology</subject><issn>2730-5422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNpFkE1OwzAQRi0kJKrSC7CyxAYWhvFM7DjLKuKnUiU2ZW05iV1SpUmIUwRX4xCciUCRWM3ie5r55jF2IeFGSqNvoyStSQBKAaAzI-CEzTAlECpBPGOLGHcAgEoSpmrGVnnXvvlh69vS8y7wfuje671reOybehzrdstds-2GenzZR163PF9urr4-r6fclT5y11a88B9dW52z0-Ca6Bd_c86e7-82-aNYPz2s8uVa9IjpKDApDIFM0WSkFWZQhlSBUZkvFVWVrsApFygJBXoMwZc6-FBBAq7A4MjQnF0e905VXw8-jnbXHYZ2OmlRacqI0OiJoiMV-2F6wg__lAT7o8oeVdlJlf1VZYG-Abj7Xk4</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Lauster, Florian</creator><creator>Luke, D. Russell</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4508-7360</orcidid></search><sort><creationdate>20211201</creationdate><title>Convergence of proximal splitting algorithms in CAT(κ) spaces and beyond</title><author>Lauster, Florian ; Luke, D. Russell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-24b83017289365290cf750859ec53dd6d0a5af34fb2e2ffec6fefd040ab2fa383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Convergence</topic><topic>Differential Geometry</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neighborhoods</topic><topic>Optimization and Real World Applications</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauster, Florian</creatorcontrib><creatorcontrib>Luke, D. Russell</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Fixed point theory and algorithms for sciences and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauster, Florian</au><au>Luke, D. Russell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of proximal splitting algorithms in CAT(κ) spaces and beyond</atitle><jtitle>Fixed point theory and algorithms for sciences and engineering</jtitle><stitle>Fixed Point Theory Algorithms Sci Eng</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><eissn>2730-5422</eissn><abstract>In the setting of CAT ( κ ) spaces, common fixed point iterations built from prox mappings (e.g. prox-prox, Krasnoselsky–Mann relaxations, nonlinear projected-gradients) converge locally linearly under the assumption of linear metric subregularity. Linear metric subregularity is in any case necessary for linearly convergent fixed point sequences, so the result is tight. To show this, we develop a theory of fixed point mappings that violate the usual assumptions of nonexpansiveness and firm nonexpansiveness in p -uniformly convex spaces.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13663-021-00698-0</doi><orcidid>https://orcid.org/0000-0002-4508-7360</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2730-5422
ispartof Fixed point theory and algorithms for sciences and engineering, 2021-12, Vol.2021 (1)
issn 2730-5422
language eng
recordid cdi_proquest_journals_2563933286
source DOAJ Directory of Open Access Journals; SpringerLink Journals - AutoHoldings; Springer Nature OA Free Journals
subjects Algorithms
Analysis
Applications of Mathematics
Convergence
Differential Geometry
Mathematical and Computational Biology
Mathematics
Mathematics and Statistics
Neighborhoods
Optimization and Real World Applications
Topology
title Convergence of proximal splitting algorithms in CAT(κ) spaces and beyond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20proximal%20splitting%20algorithms%20in%20CAT(%CE%BA)%20spaces%20and%20beyond&rft.jtitle=Fixed%20point%20theory%20and%20algorithms%20for%20sciences%20and%20engineering&rft.au=Lauster,%20Florian&rft.date=2021-12-01&rft.volume=2021&rft.issue=1&rft.eissn=2730-5422&rft_id=info:doi/10.1186/s13663-021-00698-0&rft_dat=%3Cproquest_sprin%3E2563933286%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563933286&rft_id=info:pmid/&rfr_iscdi=true