Optimizing Neural Network Parameters For Effective Classification of Benign and Malicious Websites
Bio-inspired algorithms are the most powerful way to solve optimization problems. The objective of this paper is to use optimized network parameters for website classification and the efficiency of Neural Network is improved by optimized network parameters. The network parameters are optimized using...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-08, Vol.1998 (1), p.12015 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12015 |
container_title | Journal of physics. Conference series |
container_volume | 1998 |
creator | Balamurugan, P. Amudha, T. Satheeshkumar, J. Somam, M. |
description | Bio-inspired algorithms are the most powerful way to solve optimization problems. The objective of this paper is to use optimized network parameters for website classification and the efficiency of Neural Network is improved by optimized network parameters. The network parameters are optimized using two bio-inspired algorithms: Particle Swarm Optimization (PSO) and Cuckoo Search (CS) and the optimized parameter values are used with two neural network models, a standard Multi-Layer Feed Forward Network with Backpropagation (BPN) and Radial Basis Function (RBF) Network. Security is one of the major concerns in this digital era. There are numerous websites, which are potentially risky in spreading malicious files. It is difficult to detect such websites. In this work, Neural Network is used to classify the websites as benign and malicious. The proposed neural network models are tested with URL dataset. The experimental results are assessed in terms of Error reduction, training time and classification accuracy. The experimental result shows that the optimized network parameters have given good improvement in classification with faster convergence. |
doi_str_mv | 10.1088/1742-6596/1998/1/012015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563809243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563809243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2395-5fbb806c31681a298fb796190669cefae480845b99c4a888a07a584bbfe4bd43</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKu_wYDntckmm02OWloVqvVQ8BiSNCmp282a7Cr6691lRY_O5c0w897AB8AlRtcYcT7DJc0zVgg2w0L04wzhHOHiCEx-N8e_Peen4CylPUKkr3IC9Lpp_cF_-XoHn2wXVdVL-xHiK3xWUR1sa2OCyxDhwjlrWv9u4bxSKXnnjWp9qGFw8NbWfldDVW_ho6q88aFL8MXq5FubzsGJU1WyFz86BZvlYjO_z1bru4f5zSozORFFVjitOWKGYMaxygV3uhQMC8SYMNYpSznitNBCGKo45wqVquBUa2ep3lIyBVdjbBPDW2dTK_ehi3X_UeYFIxyJnJL-qhyvTAwpRetkE_1BxU-JkRx4yoGUHKjJgafEcuTZO8no9KH5i_7P9Q3GMHf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563809243</pqid></control><display><type>article</type><title>Optimizing Neural Network Parameters For Effective Classification of Benign and Malicious Websites</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Balamurugan, P. ; Amudha, T. ; Satheeshkumar, J. ; Somam, M.</creator><creatorcontrib>Balamurugan, P. ; Amudha, T. ; Satheeshkumar, J. ; Somam, M.</creatorcontrib><description>Bio-inspired algorithms are the most powerful way to solve optimization problems. The objective of this paper is to use optimized network parameters for website classification and the efficiency of Neural Network is improved by optimized network parameters. The network parameters are optimized using two bio-inspired algorithms: Particle Swarm Optimization (PSO) and Cuckoo Search (CS) and the optimized parameter values are used with two neural network models, a standard Multi-Layer Feed Forward Network with Backpropagation (BPN) and Radial Basis Function (RBF) Network. Security is one of the major concerns in this digital era. There are numerous websites, which are potentially risky in spreading malicious files. It is difficult to detect such websites. In this work, Neural Network is used to classify the websites as benign and malicious. The proposed neural network models are tested with URL dataset. The experimental results are assessed in terms of Error reduction, training time and classification accuracy. The experimental result shows that the optimized network parameters have given good improvement in classification with faster convergence.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1998/1/012015</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Back propagation ; Back Propagation Network ; Back propagation networks ; Bio-inspired algorithms ; Classification ; Cuckoo Search ; Error reduction ; Mathematical models ; Multilayers ; Neural networks ; Parameters ; Particle Swarm Optimization ; Radial Basis Function ; Search algorithms ; URL Classification ; Websites</subject><ispartof>Journal of physics. Conference series, 2021-08, Vol.1998 (1), p.12015</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2395-5fbb806c31681a298fb796190669cefae480845b99c4a888a07a584bbfe4bd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1998/1/012015/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids></links><search><creatorcontrib>Balamurugan, P.</creatorcontrib><creatorcontrib>Amudha, T.</creatorcontrib><creatorcontrib>Satheeshkumar, J.</creatorcontrib><creatorcontrib>Somam, M.</creatorcontrib><title>Optimizing Neural Network Parameters For Effective Classification of Benign and Malicious Websites</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Bio-inspired algorithms are the most powerful way to solve optimization problems. The objective of this paper is to use optimized network parameters for website classification and the efficiency of Neural Network is improved by optimized network parameters. The network parameters are optimized using two bio-inspired algorithms: Particle Swarm Optimization (PSO) and Cuckoo Search (CS) and the optimized parameter values are used with two neural network models, a standard Multi-Layer Feed Forward Network with Backpropagation (BPN) and Radial Basis Function (RBF) Network. Security is one of the major concerns in this digital era. There are numerous websites, which are potentially risky in spreading malicious files. It is difficult to detect such websites. In this work, Neural Network is used to classify the websites as benign and malicious. The proposed neural network models are tested with URL dataset. The experimental results are assessed in terms of Error reduction, training time and classification accuracy. The experimental result shows that the optimized network parameters have given good improvement in classification with faster convergence.</description><subject>Algorithms</subject><subject>Back propagation</subject><subject>Back Propagation Network</subject><subject>Back propagation networks</subject><subject>Bio-inspired algorithms</subject><subject>Classification</subject><subject>Cuckoo Search</subject><subject>Error reduction</subject><subject>Mathematical models</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Particle Swarm Optimization</subject><subject>Radial Basis Function</subject><subject>Search algorithms</subject><subject>URL Classification</subject><subject>Websites</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkEFLAzEQhYMoWKu_wYDntckmm02OWloVqvVQ8BiSNCmp282a7Cr6691lRY_O5c0w897AB8AlRtcYcT7DJc0zVgg2w0L04wzhHOHiCEx-N8e_Peen4CylPUKkr3IC9Lpp_cF_-XoHn2wXVdVL-xHiK3xWUR1sa2OCyxDhwjlrWv9u4bxSKXnnjWp9qGFw8NbWfldDVW_ho6q88aFL8MXq5FubzsGJU1WyFz86BZvlYjO_z1bru4f5zSozORFFVjitOWKGYMaxygV3uhQMC8SYMNYpSznitNBCGKo45wqVquBUa2ep3lIyBVdjbBPDW2dTK_ehi3X_UeYFIxyJnJL-qhyvTAwpRetkE_1BxU-JkRx4yoGUHKjJgafEcuTZO8no9KH5i_7P9Q3GMHf0</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Balamurugan, P.</creator><creator>Amudha, T.</creator><creator>Satheeshkumar, J.</creator><creator>Somam, M.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210801</creationdate><title>Optimizing Neural Network Parameters For Effective Classification of Benign and Malicious Websites</title><author>Balamurugan, P. ; Amudha, T. ; Satheeshkumar, J. ; Somam, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2395-5fbb806c31681a298fb796190669cefae480845b99c4a888a07a584bbfe4bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Back propagation</topic><topic>Back Propagation Network</topic><topic>Back propagation networks</topic><topic>Bio-inspired algorithms</topic><topic>Classification</topic><topic>Cuckoo Search</topic><topic>Error reduction</topic><topic>Mathematical models</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Particle Swarm Optimization</topic><topic>Radial Basis Function</topic><topic>Search algorithms</topic><topic>URL Classification</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balamurugan, P.</creatorcontrib><creatorcontrib>Amudha, T.</creatorcontrib><creatorcontrib>Satheeshkumar, J.</creatorcontrib><creatorcontrib>Somam, M.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balamurugan, P.</au><au>Amudha, T.</au><au>Satheeshkumar, J.</au><au>Somam, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Neural Network Parameters For Effective Classification of Benign and Malicious Websites</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>1998</volume><issue>1</issue><spage>12015</spage><pages>12015-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Bio-inspired algorithms are the most powerful way to solve optimization problems. The objective of this paper is to use optimized network parameters for website classification and the efficiency of Neural Network is improved by optimized network parameters. The network parameters are optimized using two bio-inspired algorithms: Particle Swarm Optimization (PSO) and Cuckoo Search (CS) and the optimized parameter values are used with two neural network models, a standard Multi-Layer Feed Forward Network with Backpropagation (BPN) and Radial Basis Function (RBF) Network. Security is one of the major concerns in this digital era. There are numerous websites, which are potentially risky in spreading malicious files. It is difficult to detect such websites. In this work, Neural Network is used to classify the websites as benign and malicious. The proposed neural network models are tested with URL dataset. The experimental results are assessed in terms of Error reduction, training time and classification accuracy. The experimental result shows that the optimized network parameters have given good improvement in classification with faster convergence.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1998/1/012015</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-08, Vol.1998 (1), p.12015 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2563809243 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Back propagation Back Propagation Network Back propagation networks Bio-inspired algorithms Classification Cuckoo Search Error reduction Mathematical models Multilayers Neural networks Parameters Particle Swarm Optimization Radial Basis Function Search algorithms URL Classification Websites |
title | Optimizing Neural Network Parameters For Effective Classification of Benign and Malicious Websites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Neural%20Network%20Parameters%20For%20Effective%20Classification%20of%20Benign%20and%20Malicious%20Websites&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Balamurugan,%20P.&rft.date=2021-08-01&rft.volume=1998&rft.issue=1&rft.spage=12015&rft.pages=12015-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1998/1/012015&rft_dat=%3Cproquest_cross%3E2563809243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563809243&rft_id=info:pmid/&rfr_iscdi=true |