A Sylvester–Gallai Type Theorem for Abelian Groups

A finite subset of an Abelian group with respect to addition is called a Sylvester–Gallai set of type if and, for every distinct , there is an element such that , where stands for the zero of the group . We describe all Sylvester–Gallai sets of type . As a consequence, we obtain the following result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2021-07, Vol.110 (1-2), p.110-117
Hauptverfasser: Nilov, F. K., Polyanskii, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1-2
container_start_page 110
container_title Mathematical Notes
container_volume 110
creator Nilov, F. K.
Polyanskii, A. A.
description A finite subset of an Abelian group with respect to addition is called a Sylvester–Gallai set of type if and, for every distinct , there is an element such that , where stands for the zero of the group . We describe all Sylvester–Gallai sets of type . As a consequence, we obtain the following result: if is a finite set of points on an elliptic curve in and (A) if, for every two distinct points , there is a point collinear to and , then either is the Hesse configuration of the elliptic curve or consists of three points lying on the same line; (B) if, for every five distinct points , there is a point such that lie on the same conic, then consists of six points lying on the same conic.
doi_str_mv 10.1134/S0001434621070117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563790592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563790592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ec85a7d4ecb44ca9a4e58e40b51f3adc92e09ea23f092281fb7473cf7c02c9383</originalsourceid><addsrcrecordid>eNp1kMFKw0AQhhdRMFYfwFvAc3Rmd5PNHkPRVih4aD2HzXZWW9Ik7rZCbr6Db-iTmBLBg3gahv_7_xl-xq4RbhGFvFsCAEohM46gAFGdsAhTJZI8V9kpi45yctTP2UUI22HDDCFisoiXff1OYU_-6-NzZurabOJV31G8eqXW0y52rY-LiuqNaeKZbw9duGRnztSBrn7mhD0_3K-m82TxNHucFovECsz2Cdk8NWotyVZSWqONpDQnCVWKTpi11ZxAk-HCgeY8R1cpqYR1ygK3WuRiwm7G3M63b4fhx3LbHnwznCx5mgmlIdV8oHCkrG9D8OTKzm92xvclQnksp_xTzuDhoycMbPNC_jf5f9M3PFhlPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563790592</pqid></control><display><type>article</type><title>A Sylvester–Gallai Type Theorem for Abelian Groups</title><source>SpringerLink Journals</source><creator>Nilov, F. K. ; Polyanskii, A. A.</creator><creatorcontrib>Nilov, F. K. ; Polyanskii, A. A.</creatorcontrib><description>A finite subset of an Abelian group with respect to addition is called a Sylvester–Gallai set of type if and, for every distinct , there is an element such that , where stands for the zero of the group . We describe all Sylvester–Gallai sets of type . As a consequence, we obtain the following result: if is a finite set of points on an elliptic curve in and (A) if, for every two distinct points , there is a point collinear to and , then either is the Hesse configuration of the elliptic curve or consists of three points lying on the same line; (B) if, for every five distinct points , there is a point such that lie on the same conic, then consists of six points lying on the same conic.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434621070117</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Curves ; Group theory ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematical Notes, 2021-07, Vol.110 (1-2), p.110-117</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ec85a7d4ecb44ca9a4e58e40b51f3adc92e09ea23f092281fb7473cf7c02c9383</citedby><cites>FETCH-LOGICAL-c316t-ec85a7d4ecb44ca9a4e58e40b51f3adc92e09ea23f092281fb7473cf7c02c9383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434621070117$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434621070117$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nilov, F. K.</creatorcontrib><creatorcontrib>Polyanskii, A. A.</creatorcontrib><title>A Sylvester–Gallai Type Theorem for Abelian Groups</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>A finite subset of an Abelian group with respect to addition is called a Sylvester–Gallai set of type if and, for every distinct , there is an element such that , where stands for the zero of the group . We describe all Sylvester–Gallai sets of type . As a consequence, we obtain the following result: if is a finite set of points on an elliptic curve in and (A) if, for every two distinct points , there is a point collinear to and , then either is the Hesse configuration of the elliptic curve or consists of three points lying on the same line; (B) if, for every five distinct points , there is a point such that lie on the same conic, then consists of six points lying on the same conic.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Curves</subject><subject>Group theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKw0AQhhdRMFYfwFvAc3Rmd5PNHkPRVih4aD2HzXZWW9Ik7rZCbr6Db-iTmBLBg3gahv_7_xl-xq4RbhGFvFsCAEohM46gAFGdsAhTJZI8V9kpi45yctTP2UUI22HDDCFisoiXff1OYU_-6-NzZurabOJV31G8eqXW0y52rY-LiuqNaeKZbw9duGRnztSBrn7mhD0_3K-m82TxNHucFovECsz2Cdk8NWotyVZSWqONpDQnCVWKTpi11ZxAk-HCgeY8R1cpqYR1ygK3WuRiwm7G3M63b4fhx3LbHnwznCx5mgmlIdV8oHCkrG9D8OTKzm92xvclQnksp_xTzuDhoycMbPNC_jf5f9M3PFhlPg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Nilov, F. K.</creator><creator>Polyanskii, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210701</creationdate><title>A Sylvester–Gallai Type Theorem for Abelian Groups</title><author>Nilov, F. K. ; Polyanskii, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ec85a7d4ecb44ca9a4e58e40b51f3adc92e09ea23f092281fb7473cf7c02c9383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Curves</topic><topic>Group theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nilov, F. K.</creatorcontrib><creatorcontrib>Polyanskii, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nilov, F. K.</au><au>Polyanskii, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sylvester–Gallai Type Theorem for Abelian Groups</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>110</volume><issue>1-2</issue><spage>110</spage><epage>117</epage><pages>110-117</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>A finite subset of an Abelian group with respect to addition is called a Sylvester–Gallai set of type if and, for every distinct , there is an element such that , where stands for the zero of the group . We describe all Sylvester–Gallai sets of type . As a consequence, we obtain the following result: if is a finite set of points on an elliptic curve in and (A) if, for every two distinct points , there is a point collinear to and , then either is the Hesse configuration of the elliptic curve or consists of three points lying on the same line; (B) if, for every five distinct points , there is a point such that lie on the same conic, then consists of six points lying on the same conic.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434621070117</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2021-07, Vol.110 (1-2), p.110-117
issn 0001-4346
1067-9073
1573-8876
language eng
recordid cdi_proquest_journals_2563790592
source SpringerLink Journals
subjects 14/34
639/766/189
639/766/530
639/766/747
Curves
Group theory
Mathematics
Mathematics and Statistics
title A Sylvester–Gallai Type Theorem for Abelian Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sylvester%E2%80%93Gallai%20Type%20Theorem%20for%20Abelian%20Groups&rft.jtitle=Mathematical%20Notes&rft.au=Nilov,%20F.%20K.&rft.date=2021-07-01&rft.volume=110&rft.issue=1-2&rft.spage=110&rft.epage=117&rft.pages=110-117&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434621070117&rft_dat=%3Cproquest_cross%3E2563790592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563790592&rft_id=info:pmid/&rfr_iscdi=true