Dynamics of droplets under electrowetting effect with voltages exceeding the contact angle saturation threshold
Electrowetting on dielectric (EWOD) is a powerful tool in many droplet-manipulation applications with a notorious weakness caused by contact-angle saturation (CAS), a phenomenon limiting the equilibrium contact angle of an EWOD-actuated droplet at high applied voltage. In this paper, we study the sp...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-10, Vol.925, Article A19 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 925 |
creator | Vo, Quoc Tran, Tuan |
description | Electrowetting on dielectric (EWOD) is a powerful tool in many droplet-manipulation applications with a notorious weakness caused by contact-angle saturation (CAS), a phenomenon limiting the equilibrium contact angle of an EWOD-actuated droplet at high applied voltage. In this paper, we study the spreading behaviours of droplets on EWOD substrates with the range of applied voltage exceeding the saturation limit. We experimentally find that at the initial stage of spreading, the driving force at the contact line still follows the Young–Lippmann law even if the applied voltage is higher than the CAS voltage. We then theoretically establish the relation between the initial contact-line velocity and the applied voltage using the force balance at the contact line. We also find that the amplitude of capillary waves on the droplet surface generated by the contact line's initial motion increases with the applied voltage. We provide a working framework utilising EWOD with voltages beyond CAS by characterising the capillary waves formed on the droplet surface and their self-similar behaviours. We finally propose a theoretical model of the wave profiles taking into account the viscous effects and verify this model experimentally. Our results provide avenues to utilise the EWOD effect with voltages beyond the CAS threshold, and have strong bearing on emerging applications such as digital microfluidic and ink-jet printing. |
doi_str_mv | 10.1017/jfm.2021.677 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563670324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_677</cupid><sourcerecordid>2563670324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-64461c1dea37f2f1ed568eee31a646eb00bbc99362c176f7c74f8002d9fa03893</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0DAq1vzsU26R6mfUPCi55BNJtstu5uaZNX-e1Na8OJpGOaZd5gHoWtKZpRQebdx_YwRRmdCyhM0oaWoCinK-SmaEMJYQSkj5-gixg0hlJNKTpB_2A26b03E3mEb_LaDFPE4WAgYOjAp-G9IqR0aDM7lHn-3aY2_fJd0AxHDjwGw-3FaAzZ-SDozemg6wFGnMejU-iEPA8S17-wlOnO6i3B1rFP08fT4vnwpVm_Pr8v7VWE4YakQZSmooRY0l445CnYuFgDAqRalgJqQujZVxQUzVAonjSzdIv9oK6cJX1R8im4OudvgP0eISW38GIZ8UrG54EISzspM3R4oE3yMAZzahrbXYacoUXulKitVe6UqK8347Ijrvg6tbeAv9d-FXxRrexg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563670324</pqid></control><display><type>article</type><title>Dynamics of droplets under electrowetting effect with voltages exceeding the contact angle saturation threshold</title><source>Cambridge Journals Online</source><creator>Vo, Quoc ; Tran, Tuan</creator><creatorcontrib>Vo, Quoc ; Tran, Tuan</creatorcontrib><description>Electrowetting on dielectric (EWOD) is a powerful tool in many droplet-manipulation applications with a notorious weakness caused by contact-angle saturation (CAS), a phenomenon limiting the equilibrium contact angle of an EWOD-actuated droplet at high applied voltage. In this paper, we study the spreading behaviours of droplets on EWOD substrates with the range of applied voltage exceeding the saturation limit. We experimentally find that at the initial stage of spreading, the driving force at the contact line still follows the Young–Lippmann law even if the applied voltage is higher than the CAS voltage. We then theoretically establish the relation between the initial contact-line velocity and the applied voltage using the force balance at the contact line. We also find that the amplitude of capillary waves on the droplet surface generated by the contact line's initial motion increases with the applied voltage. We provide a working framework utilising EWOD with voltages beyond CAS by characterising the capillary waves formed on the droplet surface and their self-similar behaviours. We finally propose a theoretical model of the wave profiles taking into account the viscous effects and verify this model experimentally. Our results provide avenues to utilise the EWOD effect with voltages beyond the CAS threshold, and have strong bearing on emerging applications such as digital microfluidic and ink-jet printing.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.677</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Capillary waves ; Contact angle ; Droplets ; Electric potential ; Electrodes ; Equilibrium ; Indium tin oxides ; Inkjet printing ; JFM Papers ; Microfluidics ; Saturation ; Self-similarity ; Substrates ; Velocity ; Viscosity ; Voltage</subject><ispartof>Journal of fluid mechanics, 2021-10, Vol.925, Article A19</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-64461c1dea37f2f1ed568eee31a646eb00bbc99362c176f7c74f8002d9fa03893</citedby><cites>FETCH-LOGICAL-c302t-64461c1dea37f2f1ed568eee31a646eb00bbc99362c176f7c74f8002d9fa03893</cites><orcidid>0000-0002-2270-1532 ; 0000-0002-5132-6495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112021006777/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Vo, Quoc</creatorcontrib><creatorcontrib>Tran, Tuan</creatorcontrib><title>Dynamics of droplets under electrowetting effect with voltages exceeding the contact angle saturation threshold</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Electrowetting on dielectric (EWOD) is a powerful tool in many droplet-manipulation applications with a notorious weakness caused by contact-angle saturation (CAS), a phenomenon limiting the equilibrium contact angle of an EWOD-actuated droplet at high applied voltage. In this paper, we study the spreading behaviours of droplets on EWOD substrates with the range of applied voltage exceeding the saturation limit. We experimentally find that at the initial stage of spreading, the driving force at the contact line still follows the Young–Lippmann law even if the applied voltage is higher than the CAS voltage. We then theoretically establish the relation between the initial contact-line velocity and the applied voltage using the force balance at the contact line. We also find that the amplitude of capillary waves on the droplet surface generated by the contact line's initial motion increases with the applied voltage. We provide a working framework utilising EWOD with voltages beyond CAS by characterising the capillary waves formed on the droplet surface and their self-similar behaviours. We finally propose a theoretical model of the wave profiles taking into account the viscous effects and verify this model experimentally. Our results provide avenues to utilise the EWOD effect with voltages beyond the CAS threshold, and have strong bearing on emerging applications such as digital microfluidic and ink-jet printing.</description><subject>Capillary waves</subject><subject>Contact angle</subject><subject>Droplets</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Equilibrium</subject><subject>Indium tin oxides</subject><subject>Inkjet printing</subject><subject>JFM Papers</subject><subject>Microfluidics</subject><subject>Saturation</subject><subject>Self-similarity</subject><subject>Substrates</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Voltage</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEQhoMoWKs3f0DAq1vzsU26R6mfUPCi55BNJtstu5uaZNX-e1Na8OJpGOaZd5gHoWtKZpRQebdx_YwRRmdCyhM0oaWoCinK-SmaEMJYQSkj5-gixg0hlJNKTpB_2A26b03E3mEb_LaDFPE4WAgYOjAp-G9IqR0aDM7lHn-3aY2_fJd0AxHDjwGw-3FaAzZ-SDozemg6wFGnMejU-iEPA8S17-wlOnO6i3B1rFP08fT4vnwpVm_Pr8v7VWE4YakQZSmooRY0l445CnYuFgDAqRalgJqQujZVxQUzVAonjSzdIv9oK6cJX1R8im4OudvgP0eISW38GIZ8UrG54EISzspM3R4oE3yMAZzahrbXYacoUXulKitVe6UqK8347Ijrvg6tbeAv9d-FXxRrexg</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Vo, Quoc</creator><creator>Tran, Tuan</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-2270-1532</orcidid><orcidid>https://orcid.org/0000-0002-5132-6495</orcidid></search><sort><creationdate>20211025</creationdate><title>Dynamics of droplets under electrowetting effect with voltages exceeding the contact angle saturation threshold</title><author>Vo, Quoc ; Tran, Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-64461c1dea37f2f1ed568eee31a646eb00bbc99362c176f7c74f8002d9fa03893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capillary waves</topic><topic>Contact angle</topic><topic>Droplets</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Equilibrium</topic><topic>Indium tin oxides</topic><topic>Inkjet printing</topic><topic>JFM Papers</topic><topic>Microfluidics</topic><topic>Saturation</topic><topic>Self-similarity</topic><topic>Substrates</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vo, Quoc</creatorcontrib><creatorcontrib>Tran, Tuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vo, Quoc</au><au>Tran, Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of droplets under electrowetting effect with voltages exceeding the contact angle saturation threshold</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-10-25</date><risdate>2021</risdate><volume>925</volume><artnum>A19</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Electrowetting on dielectric (EWOD) is a powerful tool in many droplet-manipulation applications with a notorious weakness caused by contact-angle saturation (CAS), a phenomenon limiting the equilibrium contact angle of an EWOD-actuated droplet at high applied voltage. In this paper, we study the spreading behaviours of droplets on EWOD substrates with the range of applied voltage exceeding the saturation limit. We experimentally find that at the initial stage of spreading, the driving force at the contact line still follows the Young–Lippmann law even if the applied voltage is higher than the CAS voltage. We then theoretically establish the relation between the initial contact-line velocity and the applied voltage using the force balance at the contact line. We also find that the amplitude of capillary waves on the droplet surface generated by the contact line's initial motion increases with the applied voltage. We provide a working framework utilising EWOD with voltages beyond CAS by characterising the capillary waves formed on the droplet surface and their self-similar behaviours. We finally propose a theoretical model of the wave profiles taking into account the viscous effects and verify this model experimentally. Our results provide avenues to utilise the EWOD effect with voltages beyond the CAS threshold, and have strong bearing on emerging applications such as digital microfluidic and ink-jet printing.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.677</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2270-1532</orcidid><orcidid>https://orcid.org/0000-0002-5132-6495</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2021-10, Vol.925, Article A19 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2563670324 |
source | Cambridge Journals Online |
subjects | Capillary waves Contact angle Droplets Electric potential Electrodes Equilibrium Indium tin oxides Inkjet printing JFM Papers Microfluidics Saturation Self-similarity Substrates Velocity Viscosity Voltage |
title | Dynamics of droplets under electrowetting effect with voltages exceeding the contact angle saturation threshold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20droplets%20under%20electrowetting%20effect%20with%20voltages%20exceeding%20the%20contact%20angle%20saturation%20threshold&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Vo,%20Quoc&rft.date=2021-10-25&rft.volume=925&rft.artnum=A19&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.677&rft_dat=%3Cproquest_cross%3E2563670324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563670324&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_677&rfr_iscdi=true |