BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination
Protein ubiquitination at sites of DNA double-strand breaks (DSBs) by RNF168 recruits BRCA1 and 53BP1 1 , 2 , which are mediators of the homologous recombination and non-homologous end joining DSB repair pathways, respectively 3 . Non-homologous end joining relies on 53BP1 binding directly to ubiqui...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-08, Vol.596 (7872), p.433-437 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 437 |
---|---|
container_issue | 7872 |
container_start_page | 433 |
container_title | Nature (London) |
container_volume | 596 |
creator | Becker, Jordan R. Clifford, Gillian Bonnet, Clara Groth, Anja Wilson, Marcus D. Chapman, J. Ross |
description | Protein ubiquitination at sites of DNA double-strand breaks (DSBs) by RNF168 recruits BRCA1 and 53BP1
1
,
2
, which are mediators of the homologous recombination and non-homologous end joining DSB repair pathways, respectively
3
. Non-homologous end joining relies on 53BP1 binding directly to ubiquitinated lysine 15 on H2A-type histones (H2AK15ub)
4
,
5
(which is an RNF168-dependent modification
6
), but how RNF168 promotes BRCA1 recruitment and function remains unclear. Here we identify a tandem BRCT-domain-associated ubiquitin-dependent recruitment motif (BUDR) in BRCA1-associated RING domain protein 1 (BARD1) (the obligate partner protein of BRCA1) that, by engaging H2AK15ub, recruits BRCA1 to DSBs. Disruption of the BUDR of BARD1 compromises homologous recombination and renders cells hypersensitive to PARP inhibition and cisplatin. We further show that BARD1 binds nucleosomes through multivalent interactions: coordinated binding of H2AK15ub and unmethylated H4 lysine 20 by its adjacent BUDR and ankyrin repeat domains, respectively, provides high-affinity recognition of DNA lesions in replicated chromatin and promotes the homologous recombination activities of the BRCA1–BARD1 complex. Finally, our genetic epistasis experiments confirm that the need for BARD1 chromatin-binding activities can be entirely relieved upon deletion of RNF168 or 53BP1. Thus, our results demonstrate that by sensing DNA-damage-dependent and post-replication histone post-translation modification states, BRCA1–BARD1 complexes coordinate the antagonization of the 53BP1 pathway with promotion of homologous recombination, establishing a simple paradigm for the governance of the choice of DSB repair pathway.
A tandem BRCT-domain-associated ubiquitin-dependent recruitment motif in BARD1 recruits BRCA1 to DNA double-strand breaks (DSBs) to promote homologous recombination and antagonize the 53BP1 DSB repair pathway that mediates non-homologous end joining. |
doi_str_mv | 10.1038/s41586-021-03776-w |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2563511899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672492789</galeid><sourcerecordid>A672492789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-7342c54506ed470ff0dd5db329312594018f68c42dd5757e4f5b4b6ee732c2a73</originalsourceid><addsrcrecordid>eNp90k1v1DAQBmALgehS-AMcUASnHtL6285xWwqtqITUlrPlOJPgKol37USl_x6XXSgrrSofbI2fGUvWi9B7go8JZvokcSK0LDElJWZKyfL-BVoQng9cavUSLTCmusSayQP0JqU7jLEgir9GB4wzSqRkC_TtdHn9mRQRbJOKC7os-ofkRyiIKObar2c_-dFOPozFFIrGR3BT8TMMoQ9dmFPuc2Got-QtetXaPsG77X6Ifnw5vz27KK--f708W16VTmgxlYpx6gQXWELDFW5b3DSiqRmtGKGi4pjoVmrHaS4roYC3oua1BFCMOmoVO0SfNnNXMaxnSJO5C3Mc85OGCskEIbqqnlRnezB-bMMUrRt8cmYpFeUVVfpRlXtUByNE24cRWp_LO_7jHu9Wfm3-R8d7UF4NDN7tnXq005DNBL-mzs4pmcub611LN9bFkFKE1qyiH2x8MASbx1yYTS5MzoX5kwtzn5s-bL9srgdo_rX8DUIGbANSvho7iE9_-szY36_svf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563511899</pqid></control><display><type>article</type><title>BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Becker, Jordan R. ; Clifford, Gillian ; Bonnet, Clara ; Groth, Anja ; Wilson, Marcus D. ; Chapman, J. Ross</creator><creatorcontrib>Becker, Jordan R. ; Clifford, Gillian ; Bonnet, Clara ; Groth, Anja ; Wilson, Marcus D. ; Chapman, J. Ross</creatorcontrib><description>Protein ubiquitination at sites of DNA double-strand breaks (DSBs) by RNF168 recruits BRCA1 and 53BP1
1
,
2
, which are mediators of the homologous recombination and non-homologous end joining DSB repair pathways, respectively
3
. Non-homologous end joining relies on 53BP1 binding directly to ubiquitinated lysine 15 on H2A-type histones (H2AK15ub)
4
,
5
(which is an RNF168-dependent modification
6
), but how RNF168 promotes BRCA1 recruitment and function remains unclear. Here we identify a tandem BRCT-domain-associated ubiquitin-dependent recruitment motif (BUDR) in BRCA1-associated RING domain protein 1 (BARD1) (the obligate partner protein of BRCA1) that, by engaging H2AK15ub, recruits BRCA1 to DSBs. Disruption of the BUDR of BARD1 compromises homologous recombination and renders cells hypersensitive to PARP inhibition and cisplatin. We further show that BARD1 binds nucleosomes through multivalent interactions: coordinated binding of H2AK15ub and unmethylated H4 lysine 20 by its adjacent BUDR and ankyrin repeat domains, respectively, provides high-affinity recognition of DNA lesions in replicated chromatin and promotes the homologous recombination activities of the BRCA1–BARD1 complex. Finally, our genetic epistasis experiments confirm that the need for BARD1 chromatin-binding activities can be entirely relieved upon deletion of RNF168 or 53BP1. Thus, our results demonstrate that by sensing DNA-damage-dependent and post-replication histone post-translation modification states, BRCA1–BARD1 complexes coordinate the antagonization of the 53BP1 pathway with promotion of homologous recombination, establishing a simple paradigm for the governance of the choice of DSB repair pathway.
A tandem BRCT-domain-associated ubiquitin-dependent recruitment motif in BARD1 recruits BRCA1 to DNA double-strand breaks (DSBs) to promote homologous recombination and antagonize the 53BP1 DSB repair pathway that mediates non-homologous end joining.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03776-w</identifier><identifier>PMID: 34321663</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 14 ; 14/19 ; 14/63 ; 631/337/1427/2122 ; 631/337/1427/2190 ; 631/337/1427/2191 ; 82/1 ; 96 ; 96/106 ; Adult ; Amino Acid Motifs ; Ankyrins ; Binding ; Biological research ; Biology, Experimental ; BRCA1 protein ; BRCA1 Protein - chemistry ; BRCA1 Protein - metabolism ; Breast cancer ; Chromatin ; Chromatin - metabolism ; Cisplatin ; Cisplatin - pharmacology ; Cooperation ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Damage - drug effects ; DNA methylation ; Epistasis ; Female ; Genetic aspects ; Genetic recombination ; HCT116 Cells ; HEK293 Cells ; Histones ; Histones - chemistry ; Histones - metabolism ; Homologous Recombination ; Homology ; Humanities and Social Sciences ; Humans ; Lysine ; Lysine - chemistry ; Lysine - metabolism ; Male ; multidisciplinary ; Mutation ; Non-homologous end joining ; Nucleosomes ; Physiological aspects ; Poly(ADP-ribose) polymerase ; Poly(ADP-ribose) Polymerase Inhibitors - pharmacology ; Post-replication ; Post-translation ; Protein Domains ; Proteins ; Recombinational DNA Repair ; Recruitment ; Repair ; Science ; Science (multidisciplinary) ; Tumor Suppressor p53-Binding Protein 1 - deficiency ; Tumor Suppressor p53-Binding Protein 1 - metabolism ; Tumor Suppressor Proteins - chemistry ; Tumor Suppressor Proteins - metabolism ; Ubiquitin ; Ubiquitin - metabolism ; Ubiquitin-proteasome system ; Ubiquitin-Protein Ligases - chemistry ; Ubiquitin-Protein Ligases - deficiency ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination</subject><ispartof>Nature (London), 2021-08, Vol.596 (7872), p.433-437</ispartof><rights>Crown 2021</rights><rights>2021. Crown.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 19, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-7342c54506ed470ff0dd5db329312594018f68c42dd5757e4f5b4b6ee732c2a73</citedby><cites>FETCH-LOGICAL-c585t-7342c54506ed470ff0dd5db329312594018f68c42dd5757e4f5b4b6ee732c2a73</cites><orcidid>0000-0002-9197-485X ; 0000-0003-0577-1771 ; 0000-0002-6827-0002 ; 0000-0002-6477-4254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03776-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03776-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34321663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Jordan R.</creatorcontrib><creatorcontrib>Clifford, Gillian</creatorcontrib><creatorcontrib>Bonnet, Clara</creatorcontrib><creatorcontrib>Groth, Anja</creatorcontrib><creatorcontrib>Wilson, Marcus D.</creatorcontrib><creatorcontrib>Chapman, J. Ross</creatorcontrib><title>BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Protein ubiquitination at sites of DNA double-strand breaks (DSBs) by RNF168 recruits BRCA1 and 53BP1
1
,
2
, which are mediators of the homologous recombination and non-homologous end joining DSB repair pathways, respectively
3
. Non-homologous end joining relies on 53BP1 binding directly to ubiquitinated lysine 15 on H2A-type histones (H2AK15ub)
4
,
5
(which is an RNF168-dependent modification
6
), but how RNF168 promotes BRCA1 recruitment and function remains unclear. Here we identify a tandem BRCT-domain-associated ubiquitin-dependent recruitment motif (BUDR) in BRCA1-associated RING domain protein 1 (BARD1) (the obligate partner protein of BRCA1) that, by engaging H2AK15ub, recruits BRCA1 to DSBs. Disruption of the BUDR of BARD1 compromises homologous recombination and renders cells hypersensitive to PARP inhibition and cisplatin. We further show that BARD1 binds nucleosomes through multivalent interactions: coordinated binding of H2AK15ub and unmethylated H4 lysine 20 by its adjacent BUDR and ankyrin repeat domains, respectively, provides high-affinity recognition of DNA lesions in replicated chromatin and promotes the homologous recombination activities of the BRCA1–BARD1 complex. Finally, our genetic epistasis experiments confirm that the need for BARD1 chromatin-binding activities can be entirely relieved upon deletion of RNF168 or 53BP1. Thus, our results demonstrate that by sensing DNA-damage-dependent and post-replication histone post-translation modification states, BRCA1–BARD1 complexes coordinate the antagonization of the 53BP1 pathway with promotion of homologous recombination, establishing a simple paradigm for the governance of the choice of DSB repair pathway.
A tandem BRCT-domain-associated ubiquitin-dependent recruitment motif in BARD1 recruits BRCA1 to DNA double-strand breaks (DSBs) to promote homologous recombination and antagonize the 53BP1 DSB repair pathway that mediates non-homologous end joining.</description><subject>13</subject><subject>14</subject><subject>14/19</subject><subject>14/63</subject><subject>631/337/1427/2122</subject><subject>631/337/1427/2190</subject><subject>631/337/1427/2191</subject><subject>82/1</subject><subject>96</subject><subject>96/106</subject><subject>Adult</subject><subject>Amino Acid Motifs</subject><subject>Ankyrins</subject><subject>Binding</subject><subject>Biological research</subject><subject>Biology, Experimental</subject><subject>BRCA1 protein</subject><subject>BRCA1 Protein - chemistry</subject><subject>BRCA1 Protein - metabolism</subject><subject>Breast cancer</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Cisplatin</subject><subject>Cisplatin - pharmacology</subject><subject>Cooperation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Damage - drug effects</subject><subject>DNA methylation</subject><subject>Epistasis</subject><subject>Female</subject><subject>Genetic aspects</subject><subject>Genetic recombination</subject><subject>HCT116 Cells</subject><subject>HEK293 Cells</subject><subject>Histones</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Homologous Recombination</subject><subject>Homology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lysine</subject><subject>Lysine - chemistry</subject><subject>Lysine - metabolism</subject><subject>Male</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Non-homologous end joining</subject><subject>Nucleosomes</subject><subject>Physiological aspects</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</subject><subject>Post-replication</subject><subject>Post-translation</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Recombinational DNA Repair</subject><subject>Recruitment</subject><subject>Repair</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Tumor Suppressor p53-Binding Protein 1 - deficiency</subject><subject>Tumor Suppressor p53-Binding Protein 1 - metabolism</subject><subject>Tumor Suppressor Proteins - chemistry</subject><subject>Tumor Suppressor Proteins - metabolism</subject><subject>Ubiquitin</subject><subject>Ubiquitin - metabolism</subject><subject>Ubiquitin-proteasome system</subject><subject>Ubiquitin-Protein Ligases - chemistry</subject><subject>Ubiquitin-Protein Ligases - deficiency</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90k1v1DAQBmALgehS-AMcUASnHtL6285xWwqtqITUlrPlOJPgKol37USl_x6XXSgrrSofbI2fGUvWi9B7go8JZvokcSK0LDElJWZKyfL-BVoQng9cavUSLTCmusSayQP0JqU7jLEgir9GB4wzSqRkC_TtdHn9mRQRbJOKC7os-ofkRyiIKObar2c_-dFOPozFFIrGR3BT8TMMoQ9dmFPuc2Got-QtetXaPsG77X6Ifnw5vz27KK--f708W16VTmgxlYpx6gQXWELDFW5b3DSiqRmtGKGi4pjoVmrHaS4roYC3oua1BFCMOmoVO0SfNnNXMaxnSJO5C3Mc85OGCskEIbqqnlRnezB-bMMUrRt8cmYpFeUVVfpRlXtUByNE24cRWp_LO_7jHu9Wfm3-R8d7UF4NDN7tnXq005DNBL-mzs4pmcub611LN9bFkFKE1qyiH2x8MASbx1yYTS5MzoX5kwtzn5s-bL9srgdo_rX8DUIGbANSvho7iE9_-szY36_svf4</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Becker, Jordan R.</creator><creator>Clifford, Gillian</creator><creator>Bonnet, Clara</creator><creator>Groth, Anja</creator><creator>Wilson, Marcus D.</creator><creator>Chapman, J. Ross</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9197-485X</orcidid><orcidid>https://orcid.org/0000-0003-0577-1771</orcidid><orcidid>https://orcid.org/0000-0002-6827-0002</orcidid><orcidid>https://orcid.org/0000-0002-6477-4254</orcidid></search><sort><creationdate>20210819</creationdate><title>BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination</title><author>Becker, Jordan R. ; Clifford, Gillian ; Bonnet, Clara ; Groth, Anja ; Wilson, Marcus D. ; Chapman, J. Ross</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-7342c54506ed470ff0dd5db329312594018f68c42dd5757e4f5b4b6ee732c2a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13</topic><topic>14</topic><topic>14/19</topic><topic>14/63</topic><topic>631/337/1427/2122</topic><topic>631/337/1427/2190</topic><topic>631/337/1427/2191</topic><topic>82/1</topic><topic>96</topic><topic>96/106</topic><topic>Adult</topic><topic>Amino Acid Motifs</topic><topic>Ankyrins</topic><topic>Binding</topic><topic>Biological research</topic><topic>Biology, Experimental</topic><topic>BRCA1 protein</topic><topic>BRCA1 Protein - chemistry</topic><topic>BRCA1 Protein - metabolism</topic><topic>Breast cancer</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Cisplatin</topic><topic>Cisplatin - pharmacology</topic><topic>Cooperation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Damage - drug effects</topic><topic>DNA methylation</topic><topic>Epistasis</topic><topic>Female</topic><topic>Genetic aspects</topic><topic>Genetic recombination</topic><topic>HCT116 Cells</topic><topic>HEK293 Cells</topic><topic>Histones</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Homologous Recombination</topic><topic>Homology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lysine</topic><topic>Lysine - chemistry</topic><topic>Lysine - metabolism</topic><topic>Male</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Non-homologous end joining</topic><topic>Nucleosomes</topic><topic>Physiological aspects</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</topic><topic>Post-replication</topic><topic>Post-translation</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Recombinational DNA Repair</topic><topic>Recruitment</topic><topic>Repair</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Tumor Suppressor p53-Binding Protein 1 - deficiency</topic><topic>Tumor Suppressor p53-Binding Protein 1 - metabolism</topic><topic>Tumor Suppressor Proteins - chemistry</topic><topic>Tumor Suppressor Proteins - metabolism</topic><topic>Ubiquitin</topic><topic>Ubiquitin - metabolism</topic><topic>Ubiquitin-proteasome system</topic><topic>Ubiquitin-Protein Ligases - chemistry</topic><topic>Ubiquitin-Protein Ligases - deficiency</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Jordan R.</creatorcontrib><creatorcontrib>Clifford, Gillian</creatorcontrib><creatorcontrib>Bonnet, Clara</creatorcontrib><creatorcontrib>Groth, Anja</creatorcontrib><creatorcontrib>Wilson, Marcus D.</creatorcontrib><creatorcontrib>Chapman, J. Ross</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Jordan R.</au><au>Clifford, Gillian</au><au>Bonnet, Clara</au><au>Groth, Anja</au><au>Wilson, Marcus D.</au><au>Chapman, J. Ross</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-08-19</date><risdate>2021</risdate><volume>596</volume><issue>7872</issue><spage>433</spage><epage>437</epage><pages>433-437</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Protein ubiquitination at sites of DNA double-strand breaks (DSBs) by RNF168 recruits BRCA1 and 53BP1
1
,
2
, which are mediators of the homologous recombination and non-homologous end joining DSB repair pathways, respectively
3
. Non-homologous end joining relies on 53BP1 binding directly to ubiquitinated lysine 15 on H2A-type histones (H2AK15ub)
4
,
5
(which is an RNF168-dependent modification
6
), but how RNF168 promotes BRCA1 recruitment and function remains unclear. Here we identify a tandem BRCT-domain-associated ubiquitin-dependent recruitment motif (BUDR) in BRCA1-associated RING domain protein 1 (BARD1) (the obligate partner protein of BRCA1) that, by engaging H2AK15ub, recruits BRCA1 to DSBs. Disruption of the BUDR of BARD1 compromises homologous recombination and renders cells hypersensitive to PARP inhibition and cisplatin. We further show that BARD1 binds nucleosomes through multivalent interactions: coordinated binding of H2AK15ub and unmethylated H4 lysine 20 by its adjacent BUDR and ankyrin repeat domains, respectively, provides high-affinity recognition of DNA lesions in replicated chromatin and promotes the homologous recombination activities of the BRCA1–BARD1 complex. Finally, our genetic epistasis experiments confirm that the need for BARD1 chromatin-binding activities can be entirely relieved upon deletion of RNF168 or 53BP1. Thus, our results demonstrate that by sensing DNA-damage-dependent and post-replication histone post-translation modification states, BRCA1–BARD1 complexes coordinate the antagonization of the 53BP1 pathway with promotion of homologous recombination, establishing a simple paradigm for the governance of the choice of DSB repair pathway.
A tandem BRCT-domain-associated ubiquitin-dependent recruitment motif in BARD1 recruits BRCA1 to DNA double-strand breaks (DSBs) to promote homologous recombination and antagonize the 53BP1 DSB repair pathway that mediates non-homologous end joining.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34321663</pmid><doi>10.1038/s41586-021-03776-w</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9197-485X</orcidid><orcidid>https://orcid.org/0000-0003-0577-1771</orcidid><orcidid>https://orcid.org/0000-0002-6827-0002</orcidid><orcidid>https://orcid.org/0000-0002-6477-4254</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-08, Vol.596 (7872), p.433-437 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_journals_2563511899 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 13 14 14/19 14/63 631/337/1427/2122 631/337/1427/2190 631/337/1427/2191 82/1 96 96/106 Adult Amino Acid Motifs Ankyrins Binding Biological research Biology, Experimental BRCA1 protein BRCA1 Protein - chemistry BRCA1 Protein - metabolism Breast cancer Chromatin Chromatin - metabolism Cisplatin Cisplatin - pharmacology Cooperation Deoxyribonucleic acid DNA DNA biosynthesis DNA Breaks, Double-Stranded DNA damage DNA Damage - drug effects DNA methylation Epistasis Female Genetic aspects Genetic recombination HCT116 Cells HEK293 Cells Histones Histones - chemistry Histones - metabolism Homologous Recombination Homology Humanities and Social Sciences Humans Lysine Lysine - chemistry Lysine - metabolism Male multidisciplinary Mutation Non-homologous end joining Nucleosomes Physiological aspects Poly(ADP-ribose) polymerase Poly(ADP-ribose) Polymerase Inhibitors - pharmacology Post-replication Post-translation Protein Domains Proteins Recombinational DNA Repair Recruitment Repair Science Science (multidisciplinary) Tumor Suppressor p53-Binding Protein 1 - deficiency Tumor Suppressor p53-Binding Protein 1 - metabolism Tumor Suppressor Proteins - chemistry Tumor Suppressor Proteins - metabolism Ubiquitin Ubiquitin - metabolism Ubiquitin-proteasome system Ubiquitin-Protein Ligases - chemistry Ubiquitin-Protein Ligases - deficiency Ubiquitin-Protein Ligases - metabolism Ubiquitination |
title | BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BARD1%20reads%20H2A%20lysine%2015%20ubiquitination%20to%20direct%20homologous%20recombination&rft.jtitle=Nature%20(London)&rft.au=Becker,%20Jordan%20R.&rft.date=2021-08-19&rft.volume=596&rft.issue=7872&rft.spage=433&rft.epage=437&rft.pages=433-437&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03776-w&rft_dat=%3Cgale_proqu%3EA672492789%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563511899&rft_id=info:pmid/34321663&rft_galeid=A672492789&rfr_iscdi=true |