BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination

Protein ubiquitination at sites of DNA double-strand breaks (DSBs) by RNF168 recruits BRCA1 and 53BP1 1 , 2 , which are mediators of the homologous recombination and non-homologous end joining DSB repair pathways, respectively 3 . Non-homologous end joining relies on 53BP1 binding directly to ubiqui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-08, Vol.596 (7872), p.433-437
Hauptverfasser: Becker, Jordan R., Clifford, Gillian, Bonnet, Clara, Groth, Anja, Wilson, Marcus D., Chapman, J. Ross
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 7872
container_start_page 433
container_title Nature (London)
container_volume 596
creator Becker, Jordan R.
Clifford, Gillian
Bonnet, Clara
Groth, Anja
Wilson, Marcus D.
Chapman, J. Ross
description Protein ubiquitination at sites of DNA double-strand breaks (DSBs) by RNF168 recruits BRCA1 and 53BP1 1 , 2 , which are mediators of the homologous recombination and non-homologous end joining DSB repair pathways, respectively 3 . Non-homologous end joining relies on 53BP1 binding directly to ubiquitinated lysine 15 on H2A-type histones (H2AK15ub) 4 , 5 (which is an RNF168-dependent modification 6 ), but how RNF168 promotes BRCA1 recruitment and function remains unclear. Here we identify a tandem BRCT-domain-associated ubiquitin-dependent recruitment motif (BUDR) in BRCA1-associated RING domain protein 1 (BARD1) (the obligate partner protein of BRCA1) that, by engaging H2AK15ub, recruits BRCA1 to DSBs. Disruption of the BUDR of BARD1 compromises homologous recombination and renders cells hypersensitive to PARP inhibition and cisplatin. We further show that BARD1 binds nucleosomes through multivalent interactions: coordinated binding of H2AK15ub and unmethylated H4 lysine 20 by its adjacent BUDR and ankyrin repeat domains, respectively, provides high-affinity recognition of DNA lesions in replicated chromatin and promotes the homologous recombination activities of the BRCA1–BARD1 complex. Finally, our genetic epistasis experiments confirm that the need for BARD1 chromatin-binding activities can be entirely relieved upon deletion of RNF168 or 53BP1. Thus, our results demonstrate that by sensing DNA-damage-dependent and post-replication histone post-translation modification states, BRCA1–BARD1 complexes coordinate the antagonization of the 53BP1 pathway with promotion of homologous recombination, establishing a simple paradigm for the governance of the choice of DSB repair pathway. A tandem BRCT-domain-associated ubiquitin-dependent recruitment motif in BARD1 recruits BRCA1 to DNA double-strand breaks (DSBs) to promote homologous recombination and antagonize the 53BP1 DSB repair pathway that mediates non-homologous end joining.
doi_str_mv 10.1038/s41586-021-03776-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2563511899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672492789</galeid><sourcerecordid>A672492789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-7342c54506ed470ff0dd5db329312594018f68c42dd5757e4f5b4b6ee732c2a73</originalsourceid><addsrcrecordid>eNp90k1v1DAQBmALgehS-AMcUASnHtL6285xWwqtqITUlrPlOJPgKol37USl_x6XXSgrrSofbI2fGUvWi9B7go8JZvokcSK0LDElJWZKyfL-BVoQng9cavUSLTCmusSayQP0JqU7jLEgir9GB4wzSqRkC_TtdHn9mRQRbJOKC7os-ofkRyiIKObar2c_-dFOPozFFIrGR3BT8TMMoQ9dmFPuc2Got-QtetXaPsG77X6Ifnw5vz27KK--f708W16VTmgxlYpx6gQXWELDFW5b3DSiqRmtGKGi4pjoVmrHaS4roYC3oua1BFCMOmoVO0SfNnNXMaxnSJO5C3Mc85OGCskEIbqqnlRnezB-bMMUrRt8cmYpFeUVVfpRlXtUByNE24cRWp_LO_7jHu9Wfm3-R8d7UF4NDN7tnXq005DNBL-mzs4pmcub611LN9bFkFKE1qyiH2x8MASbx1yYTS5MzoX5kwtzn5s-bL9srgdo_rX8DUIGbANSvho7iE9_-szY36_svf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563511899</pqid></control><display><type>article</type><title>BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Becker, Jordan R. ; Clifford, Gillian ; Bonnet, Clara ; Groth, Anja ; Wilson, Marcus D. ; Chapman, J. Ross</creator><creatorcontrib>Becker, Jordan R. ; Clifford, Gillian ; Bonnet, Clara ; Groth, Anja ; Wilson, Marcus D. ; Chapman, J. Ross</creatorcontrib><description>Protein ubiquitination at sites of DNA double-strand breaks (DSBs) by RNF168 recruits BRCA1 and 53BP1 1 , 2 , which are mediators of the homologous recombination and non-homologous end joining DSB repair pathways, respectively 3 . Non-homologous end joining relies on 53BP1 binding directly to ubiquitinated lysine 15 on H2A-type histones (H2AK15ub) 4 , 5 (which is an RNF168-dependent modification 6 ), but how RNF168 promotes BRCA1 recruitment and function remains unclear. Here we identify a tandem BRCT-domain-associated ubiquitin-dependent recruitment motif (BUDR) in BRCA1-associated RING domain protein 1 (BARD1) (the obligate partner protein of BRCA1) that, by engaging H2AK15ub, recruits BRCA1 to DSBs. Disruption of the BUDR of BARD1 compromises homologous recombination and renders cells hypersensitive to PARP inhibition and cisplatin. We further show that BARD1 binds nucleosomes through multivalent interactions: coordinated binding of H2AK15ub and unmethylated H4 lysine 20 by its adjacent BUDR and ankyrin repeat domains, respectively, provides high-affinity recognition of DNA lesions in replicated chromatin and promotes the homologous recombination activities of the BRCA1–BARD1 complex. Finally, our genetic epistasis experiments confirm that the need for BARD1 chromatin-binding activities can be entirely relieved upon deletion of RNF168 or 53BP1. Thus, our results demonstrate that by sensing DNA-damage-dependent and post-replication histone post-translation modification states, BRCA1–BARD1 complexes coordinate the antagonization of the 53BP1 pathway with promotion of homologous recombination, establishing a simple paradigm for the governance of the choice of DSB repair pathway. A tandem BRCT-domain-associated ubiquitin-dependent recruitment motif in BARD1 recruits BRCA1 to DNA double-strand breaks (DSBs) to promote homologous recombination and antagonize the 53BP1 DSB repair pathway that mediates non-homologous end joining.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03776-w</identifier><identifier>PMID: 34321663</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 14 ; 14/19 ; 14/63 ; 631/337/1427/2122 ; 631/337/1427/2190 ; 631/337/1427/2191 ; 82/1 ; 96 ; 96/106 ; Adult ; Amino Acid Motifs ; Ankyrins ; Binding ; Biological research ; Biology, Experimental ; BRCA1 protein ; BRCA1 Protein - chemistry ; BRCA1 Protein - metabolism ; Breast cancer ; Chromatin ; Chromatin - metabolism ; Cisplatin ; Cisplatin - pharmacology ; Cooperation ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Damage - drug effects ; DNA methylation ; Epistasis ; Female ; Genetic aspects ; Genetic recombination ; HCT116 Cells ; HEK293 Cells ; Histones ; Histones - chemistry ; Histones - metabolism ; Homologous Recombination ; Homology ; Humanities and Social Sciences ; Humans ; Lysine ; Lysine - chemistry ; Lysine - metabolism ; Male ; multidisciplinary ; Mutation ; Non-homologous end joining ; Nucleosomes ; Physiological aspects ; Poly(ADP-ribose) polymerase ; Poly(ADP-ribose) Polymerase Inhibitors - pharmacology ; Post-replication ; Post-translation ; Protein Domains ; Proteins ; Recombinational DNA Repair ; Recruitment ; Repair ; Science ; Science (multidisciplinary) ; Tumor Suppressor p53-Binding Protein 1 - deficiency ; Tumor Suppressor p53-Binding Protein 1 - metabolism ; Tumor Suppressor Proteins - chemistry ; Tumor Suppressor Proteins - metabolism ; Ubiquitin ; Ubiquitin - metabolism ; Ubiquitin-proteasome system ; Ubiquitin-Protein Ligases - chemistry ; Ubiquitin-Protein Ligases - deficiency ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination</subject><ispartof>Nature (London), 2021-08, Vol.596 (7872), p.433-437</ispartof><rights>Crown 2021</rights><rights>2021. Crown.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 19, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-7342c54506ed470ff0dd5db329312594018f68c42dd5757e4f5b4b6ee732c2a73</citedby><cites>FETCH-LOGICAL-c585t-7342c54506ed470ff0dd5db329312594018f68c42dd5757e4f5b4b6ee732c2a73</cites><orcidid>0000-0002-9197-485X ; 0000-0003-0577-1771 ; 0000-0002-6827-0002 ; 0000-0002-6477-4254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03776-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03776-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34321663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Jordan R.</creatorcontrib><creatorcontrib>Clifford, Gillian</creatorcontrib><creatorcontrib>Bonnet, Clara</creatorcontrib><creatorcontrib>Groth, Anja</creatorcontrib><creatorcontrib>Wilson, Marcus D.</creatorcontrib><creatorcontrib>Chapman, J. Ross</creatorcontrib><title>BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Protein ubiquitination at sites of DNA double-strand breaks (DSBs) by RNF168 recruits BRCA1 and 53BP1 1 , 2 , which are mediators of the homologous recombination and non-homologous end joining DSB repair pathways, respectively 3 . Non-homologous end joining relies on 53BP1 binding directly to ubiquitinated lysine 15 on H2A-type histones (H2AK15ub) 4 , 5 (which is an RNF168-dependent modification 6 ), but how RNF168 promotes BRCA1 recruitment and function remains unclear. Here we identify a tandem BRCT-domain-associated ubiquitin-dependent recruitment motif (BUDR) in BRCA1-associated RING domain protein 1 (BARD1) (the obligate partner protein of BRCA1) that, by engaging H2AK15ub, recruits BRCA1 to DSBs. Disruption of the BUDR of BARD1 compromises homologous recombination and renders cells hypersensitive to PARP inhibition and cisplatin. We further show that BARD1 binds nucleosomes through multivalent interactions: coordinated binding of H2AK15ub and unmethylated H4 lysine 20 by its adjacent BUDR and ankyrin repeat domains, respectively, provides high-affinity recognition of DNA lesions in replicated chromatin and promotes the homologous recombination activities of the BRCA1–BARD1 complex. Finally, our genetic epistasis experiments confirm that the need for BARD1 chromatin-binding activities can be entirely relieved upon deletion of RNF168 or 53BP1. Thus, our results demonstrate that by sensing DNA-damage-dependent and post-replication histone post-translation modification states, BRCA1–BARD1 complexes coordinate the antagonization of the 53BP1 pathway with promotion of homologous recombination, establishing a simple paradigm for the governance of the choice of DSB repair pathway. A tandem BRCT-domain-associated ubiquitin-dependent recruitment motif in BARD1 recruits BRCA1 to DNA double-strand breaks (DSBs) to promote homologous recombination and antagonize the 53BP1 DSB repair pathway that mediates non-homologous end joining.</description><subject>13</subject><subject>14</subject><subject>14/19</subject><subject>14/63</subject><subject>631/337/1427/2122</subject><subject>631/337/1427/2190</subject><subject>631/337/1427/2191</subject><subject>82/1</subject><subject>96</subject><subject>96/106</subject><subject>Adult</subject><subject>Amino Acid Motifs</subject><subject>Ankyrins</subject><subject>Binding</subject><subject>Biological research</subject><subject>Biology, Experimental</subject><subject>BRCA1 protein</subject><subject>BRCA1 Protein - chemistry</subject><subject>BRCA1 Protein - metabolism</subject><subject>Breast cancer</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Cisplatin</subject><subject>Cisplatin - pharmacology</subject><subject>Cooperation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Damage - drug effects</subject><subject>DNA methylation</subject><subject>Epistasis</subject><subject>Female</subject><subject>Genetic aspects</subject><subject>Genetic recombination</subject><subject>HCT116 Cells</subject><subject>HEK293 Cells</subject><subject>Histones</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Homologous Recombination</subject><subject>Homology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lysine</subject><subject>Lysine - chemistry</subject><subject>Lysine - metabolism</subject><subject>Male</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Non-homologous end joining</subject><subject>Nucleosomes</subject><subject>Physiological aspects</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</subject><subject>Post-replication</subject><subject>Post-translation</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Recombinational DNA Repair</subject><subject>Recruitment</subject><subject>Repair</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Tumor Suppressor p53-Binding Protein 1 - deficiency</subject><subject>Tumor Suppressor p53-Binding Protein 1 - metabolism</subject><subject>Tumor Suppressor Proteins - chemistry</subject><subject>Tumor Suppressor Proteins - metabolism</subject><subject>Ubiquitin</subject><subject>Ubiquitin - metabolism</subject><subject>Ubiquitin-proteasome system</subject><subject>Ubiquitin-Protein Ligases - chemistry</subject><subject>Ubiquitin-Protein Ligases - deficiency</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90k1v1DAQBmALgehS-AMcUASnHtL6285xWwqtqITUlrPlOJPgKol37USl_x6XXSgrrSofbI2fGUvWi9B7go8JZvokcSK0LDElJWZKyfL-BVoQng9cavUSLTCmusSayQP0JqU7jLEgir9GB4wzSqRkC_TtdHn9mRQRbJOKC7os-ofkRyiIKObar2c_-dFOPozFFIrGR3BT8TMMoQ9dmFPuc2Got-QtetXaPsG77X6Ifnw5vz27KK--f708W16VTmgxlYpx6gQXWELDFW5b3DSiqRmtGKGi4pjoVmrHaS4roYC3oua1BFCMOmoVO0SfNnNXMaxnSJO5C3Mc85OGCskEIbqqnlRnezB-bMMUrRt8cmYpFeUVVfpRlXtUByNE24cRWp_LO_7jHu9Wfm3-R8d7UF4NDN7tnXq005DNBL-mzs4pmcub611LN9bFkFKE1qyiH2x8MASbx1yYTS5MzoX5kwtzn5s-bL9srgdo_rX8DUIGbANSvho7iE9_-szY36_svf4</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Becker, Jordan R.</creator><creator>Clifford, Gillian</creator><creator>Bonnet, Clara</creator><creator>Groth, Anja</creator><creator>Wilson, Marcus D.</creator><creator>Chapman, J. Ross</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9197-485X</orcidid><orcidid>https://orcid.org/0000-0003-0577-1771</orcidid><orcidid>https://orcid.org/0000-0002-6827-0002</orcidid><orcidid>https://orcid.org/0000-0002-6477-4254</orcidid></search><sort><creationdate>20210819</creationdate><title>BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination</title><author>Becker, Jordan R. ; Clifford, Gillian ; Bonnet, Clara ; Groth, Anja ; Wilson, Marcus D. ; Chapman, J. Ross</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-7342c54506ed470ff0dd5db329312594018f68c42dd5757e4f5b4b6ee732c2a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13</topic><topic>14</topic><topic>14/19</topic><topic>14/63</topic><topic>631/337/1427/2122</topic><topic>631/337/1427/2190</topic><topic>631/337/1427/2191</topic><topic>82/1</topic><topic>96</topic><topic>96/106</topic><topic>Adult</topic><topic>Amino Acid Motifs</topic><topic>Ankyrins</topic><topic>Binding</topic><topic>Biological research</topic><topic>Biology, Experimental</topic><topic>BRCA1 protein</topic><topic>BRCA1 Protein - chemistry</topic><topic>BRCA1 Protein - metabolism</topic><topic>Breast cancer</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Cisplatin</topic><topic>Cisplatin - pharmacology</topic><topic>Cooperation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Damage - drug effects</topic><topic>DNA methylation</topic><topic>Epistasis</topic><topic>Female</topic><topic>Genetic aspects</topic><topic>Genetic recombination</topic><topic>HCT116 Cells</topic><topic>HEK293 Cells</topic><topic>Histones</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Homologous Recombination</topic><topic>Homology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lysine</topic><topic>Lysine - chemistry</topic><topic>Lysine - metabolism</topic><topic>Male</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Non-homologous end joining</topic><topic>Nucleosomes</topic><topic>Physiological aspects</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</topic><topic>Post-replication</topic><topic>Post-translation</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Recombinational DNA Repair</topic><topic>Recruitment</topic><topic>Repair</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Tumor Suppressor p53-Binding Protein 1 - deficiency</topic><topic>Tumor Suppressor p53-Binding Protein 1 - metabolism</topic><topic>Tumor Suppressor Proteins - chemistry</topic><topic>Tumor Suppressor Proteins - metabolism</topic><topic>Ubiquitin</topic><topic>Ubiquitin - metabolism</topic><topic>Ubiquitin-proteasome system</topic><topic>Ubiquitin-Protein Ligases - chemistry</topic><topic>Ubiquitin-Protein Ligases - deficiency</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Jordan R.</creatorcontrib><creatorcontrib>Clifford, Gillian</creatorcontrib><creatorcontrib>Bonnet, Clara</creatorcontrib><creatorcontrib>Groth, Anja</creatorcontrib><creatorcontrib>Wilson, Marcus D.</creatorcontrib><creatorcontrib>Chapman, J. Ross</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Jordan R.</au><au>Clifford, Gillian</au><au>Bonnet, Clara</au><au>Groth, Anja</au><au>Wilson, Marcus D.</au><au>Chapman, J. Ross</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-08-19</date><risdate>2021</risdate><volume>596</volume><issue>7872</issue><spage>433</spage><epage>437</epage><pages>433-437</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Protein ubiquitination at sites of DNA double-strand breaks (DSBs) by RNF168 recruits BRCA1 and 53BP1 1 , 2 , which are mediators of the homologous recombination and non-homologous end joining DSB repair pathways, respectively 3 . Non-homologous end joining relies on 53BP1 binding directly to ubiquitinated lysine 15 on H2A-type histones (H2AK15ub) 4 , 5 (which is an RNF168-dependent modification 6 ), but how RNF168 promotes BRCA1 recruitment and function remains unclear. Here we identify a tandem BRCT-domain-associated ubiquitin-dependent recruitment motif (BUDR) in BRCA1-associated RING domain protein 1 (BARD1) (the obligate partner protein of BRCA1) that, by engaging H2AK15ub, recruits BRCA1 to DSBs. Disruption of the BUDR of BARD1 compromises homologous recombination and renders cells hypersensitive to PARP inhibition and cisplatin. We further show that BARD1 binds nucleosomes through multivalent interactions: coordinated binding of H2AK15ub and unmethylated H4 lysine 20 by its adjacent BUDR and ankyrin repeat domains, respectively, provides high-affinity recognition of DNA lesions in replicated chromatin and promotes the homologous recombination activities of the BRCA1–BARD1 complex. Finally, our genetic epistasis experiments confirm that the need for BARD1 chromatin-binding activities can be entirely relieved upon deletion of RNF168 or 53BP1. Thus, our results demonstrate that by sensing DNA-damage-dependent and post-replication histone post-translation modification states, BRCA1–BARD1 complexes coordinate the antagonization of the 53BP1 pathway with promotion of homologous recombination, establishing a simple paradigm for the governance of the choice of DSB repair pathway. A tandem BRCT-domain-associated ubiquitin-dependent recruitment motif in BARD1 recruits BRCA1 to DNA double-strand breaks (DSBs) to promote homologous recombination and antagonize the 53BP1 DSB repair pathway that mediates non-homologous end joining.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34321663</pmid><doi>10.1038/s41586-021-03776-w</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9197-485X</orcidid><orcidid>https://orcid.org/0000-0003-0577-1771</orcidid><orcidid>https://orcid.org/0000-0002-6827-0002</orcidid><orcidid>https://orcid.org/0000-0002-6477-4254</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-08, Vol.596 (7872), p.433-437
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_journals_2563511899
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 13
14
14/19
14/63
631/337/1427/2122
631/337/1427/2190
631/337/1427/2191
82/1
96
96/106
Adult
Amino Acid Motifs
Ankyrins
Binding
Biological research
Biology, Experimental
BRCA1 protein
BRCA1 Protein - chemistry
BRCA1 Protein - metabolism
Breast cancer
Chromatin
Chromatin - metabolism
Cisplatin
Cisplatin - pharmacology
Cooperation
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA Breaks, Double-Stranded
DNA damage
DNA Damage - drug effects
DNA methylation
Epistasis
Female
Genetic aspects
Genetic recombination
HCT116 Cells
HEK293 Cells
Histones
Histones - chemistry
Histones - metabolism
Homologous Recombination
Homology
Humanities and Social Sciences
Humans
Lysine
Lysine - chemistry
Lysine - metabolism
Male
multidisciplinary
Mutation
Non-homologous end joining
Nucleosomes
Physiological aspects
Poly(ADP-ribose) polymerase
Poly(ADP-ribose) Polymerase Inhibitors - pharmacology
Post-replication
Post-translation
Protein Domains
Proteins
Recombinational DNA Repair
Recruitment
Repair
Science
Science (multidisciplinary)
Tumor Suppressor p53-Binding Protein 1 - deficiency
Tumor Suppressor p53-Binding Protein 1 - metabolism
Tumor Suppressor Proteins - chemistry
Tumor Suppressor Proteins - metabolism
Ubiquitin
Ubiquitin - metabolism
Ubiquitin-proteasome system
Ubiquitin-Protein Ligases - chemistry
Ubiquitin-Protein Ligases - deficiency
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
title BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BARD1%20reads%20H2A%20lysine%2015%20ubiquitination%20to%20direct%20homologous%20recombination&rft.jtitle=Nature%20(London)&rft.au=Becker,%20Jordan%20R.&rft.date=2021-08-19&rft.volume=596&rft.issue=7872&rft.spage=433&rft.epage=437&rft.pages=433-437&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03776-w&rft_dat=%3Cgale_proqu%3EA672492789%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563511899&rft_id=info:pmid/34321663&rft_galeid=A672492789&rfr_iscdi=true