Morphological and Other Research Techniques for Almost Cyclic Time Series as Applied to СО2 Concentration Series

Based on the morphological analysis techniques developed under the guidance of Yu.P. Pyt’ev, a method for filtering time series is proposed that is capable of detecting an almost cyclic component with a varying cycle length and varying series members within cycles. The effectiveness of the approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2021-07, Vol.61 (7), p.1106-1117
Hauptverfasser: Avilov, V. K., Aleshnovskii, V. S., Bezrukova, A. V., Gazaryan, V. A., Zyuzina, N. A., Kurbatova, Yu. A., Tarbaev, D. A., Chulichkov, A. I., Shapkina, N. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1117
container_issue 7
container_start_page 1106
container_title Computational mathematics and mathematical physics
container_volume 61
creator Avilov, V. K.
Aleshnovskii, V. S.
Bezrukova, A. V.
Gazaryan, V. A.
Zyuzina, N. A.
Kurbatova, Yu. A.
Tarbaev, D. A.
Chulichkov, A. I.
Shapkina, N. E.
description Based on the morphological analysis techniques developed under the guidance of Yu.P. Pyt’ev, a method for filtering time series is proposed that is capable of detecting an almost cyclic component with a varying cycle length and varying series members within cycles. The effectiveness of the approach is illustrated as applied to decomposition of time series of atmospheric СО 2 concentrations. After filtering out the series component responsible for diurnal variability, the series residual becomes stationary, so mathematical statistical methods and Fourier analysis can be used for its further investigation. The results are verified by comparing them with Fourier analysis data. A cyclicity with a period longer than one day is studied using Fourier expansion and wavelet analysis of the original series.
doi_str_mv 10.1134/S0965542521070046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563476346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563476346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2316-635cdc351113b556161b61612fc8023f175ca5750e21aed70ff54fac1bcb09283</originalsourceid><addsrcrecordid>eNp1UEtOwzAQtRBIlMIB2FliHfAn47TLKuInFVWiZR05jt24Su1gp4teBokb9UgkaiUWiMXMLN5nZh5Ct5TcU8rThyWZCoCUAaMkIyQVZ2hEASARQrBzNBrgZMAv0VWMG0KomE74CIU3H9raN35tlWywdBVedLUO-F1HLYOq8Uqr2tnPnY7Y-IBnzdbHDud71ViFV3ar8VIH26My4lnbNlZXuPP48H34Yjj3TmnXBdlZ707Ea3RhZBP1zWmO0cfT4yp_SeaL59d8Nk8U41QkgoOqFAfa_1cCCCpoOTRm1IQwbmgGSkIGRDMqdZURYyA1UtFSlWTKJnyM7o6-bfDD-V2x8bvg-pUFA8HTrC_Rs-iRpYKPMWhTtMFuZdgXlBRDtMWfaHsNO2piz3VrHX6d_xf9ADt7e3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563476346</pqid></control><display><type>article</type><title>Morphological and Other Research Techniques for Almost Cyclic Time Series as Applied to СО2 Concentration Series</title><source>SpringerNature Journals</source><creator>Avilov, V. K. ; Aleshnovskii, V. S. ; Bezrukova, A. V. ; Gazaryan, V. A. ; Zyuzina, N. A. ; Kurbatova, Yu. A. ; Tarbaev, D. A. ; Chulichkov, A. I. ; Shapkina, N. E.</creator><creatorcontrib>Avilov, V. K. ; Aleshnovskii, V. S. ; Bezrukova, A. V. ; Gazaryan, V. A. ; Zyuzina, N. A. ; Kurbatova, Yu. A. ; Tarbaev, D. A. ; Chulichkov, A. I. ; Shapkina, N. E.</creatorcontrib><description>Based on the morphological analysis techniques developed under the guidance of Yu.P. Pyt’ev, a method for filtering time series is proposed that is capable of detecting an almost cyclic component with a varying cycle length and varying series members within cycles. The effectiveness of the approach is illustrated as applied to decomposition of time series of atmospheric СО 2 concentrations. After filtering out the series component responsible for diurnal variability, the series residual becomes stationary, so mathematical statistical methods and Fourier analysis can be used for its further investigation. The results are verified by comparing them with Fourier analysis data. A cyclicity with a period longer than one day is studied using Fourier expansion and wavelet analysis of the original series.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542521070046</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Filtration ; Fourier analysis ; Information Science ; Mathematics ; Mathematics and Statistics ; Morphology ; Statistical methods ; Time series ; Wavelet analysis</subject><ispartof>Computational mathematics and mathematical physics, 2021-07, Vol.61 (7), p.1106-1117</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2021, Vol. 61, No. 7, pp. 1106–1117. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2021, Vol. 61, No. 7, pp. 1113–1124.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2316-635cdc351113b556161b61612fc8023f175ca5750e21aed70ff54fac1bcb09283</citedby><cites>FETCH-LOGICAL-c2316-635cdc351113b556161b61612fc8023f175ca5750e21aed70ff54fac1bcb09283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542521070046$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542521070046$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Avilov, V. K.</creatorcontrib><creatorcontrib>Aleshnovskii, V. S.</creatorcontrib><creatorcontrib>Bezrukova, A. V.</creatorcontrib><creatorcontrib>Gazaryan, V. A.</creatorcontrib><creatorcontrib>Zyuzina, N. A.</creatorcontrib><creatorcontrib>Kurbatova, Yu. A.</creatorcontrib><creatorcontrib>Tarbaev, D. A.</creatorcontrib><creatorcontrib>Chulichkov, A. I.</creatorcontrib><creatorcontrib>Shapkina, N. E.</creatorcontrib><title>Morphological and Other Research Techniques for Almost Cyclic Time Series as Applied to СО2 Concentration Series</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Based on the morphological analysis techniques developed under the guidance of Yu.P. Pyt’ev, a method for filtering time series is proposed that is capable of detecting an almost cyclic component with a varying cycle length and varying series members within cycles. The effectiveness of the approach is illustrated as applied to decomposition of time series of atmospheric СО 2 concentrations. After filtering out the series component responsible for diurnal variability, the series residual becomes stationary, so mathematical statistical methods and Fourier analysis can be used for its further investigation. The results are verified by comparing them with Fourier analysis data. A cyclicity with a period longer than one day is studied using Fourier expansion and wavelet analysis of the original series.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Filtration</subject><subject>Fourier analysis</subject><subject>Information Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Morphology</subject><subject>Statistical methods</subject><subject>Time series</subject><subject>Wavelet analysis</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UEtOwzAQtRBIlMIB2FliHfAn47TLKuInFVWiZR05jt24Su1gp4teBokb9UgkaiUWiMXMLN5nZh5Ct5TcU8rThyWZCoCUAaMkIyQVZ2hEASARQrBzNBrgZMAv0VWMG0KomE74CIU3H9raN35tlWywdBVedLUO-F1HLYOq8Uqr2tnPnY7Y-IBnzdbHDud71ViFV3ar8VIH26My4lnbNlZXuPP48H34Yjj3TmnXBdlZ707Ea3RhZBP1zWmO0cfT4yp_SeaL59d8Nk8U41QkgoOqFAfa_1cCCCpoOTRm1IQwbmgGSkIGRDMqdZURYyA1UtFSlWTKJnyM7o6-bfDD-V2x8bvg-pUFA8HTrC_Rs-iRpYKPMWhTtMFuZdgXlBRDtMWfaHsNO2piz3VrHX6d_xf9ADt7e3s</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Avilov, V. K.</creator><creator>Aleshnovskii, V. S.</creator><creator>Bezrukova, A. V.</creator><creator>Gazaryan, V. A.</creator><creator>Zyuzina, N. A.</creator><creator>Kurbatova, Yu. A.</creator><creator>Tarbaev, D. A.</creator><creator>Chulichkov, A. I.</creator><creator>Shapkina, N. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210701</creationdate><title>Morphological and Other Research Techniques for Almost Cyclic Time Series as Applied to СО2 Concentration Series</title><author>Avilov, V. K. ; Aleshnovskii, V. S. ; Bezrukova, A. V. ; Gazaryan, V. A. ; Zyuzina, N. A. ; Kurbatova, Yu. A. ; Tarbaev, D. A. ; Chulichkov, A. I. ; Shapkina, N. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2316-635cdc351113b556161b61612fc8023f175ca5750e21aed70ff54fac1bcb09283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Filtration</topic><topic>Fourier analysis</topic><topic>Information Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Morphology</topic><topic>Statistical methods</topic><topic>Time series</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avilov, V. K.</creatorcontrib><creatorcontrib>Aleshnovskii, V. S.</creatorcontrib><creatorcontrib>Bezrukova, A. V.</creatorcontrib><creatorcontrib>Gazaryan, V. A.</creatorcontrib><creatorcontrib>Zyuzina, N. A.</creatorcontrib><creatorcontrib>Kurbatova, Yu. A.</creatorcontrib><creatorcontrib>Tarbaev, D. A.</creatorcontrib><creatorcontrib>Chulichkov, A. I.</creatorcontrib><creatorcontrib>Shapkina, N. E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avilov, V. K.</au><au>Aleshnovskii, V. S.</au><au>Bezrukova, A. V.</au><au>Gazaryan, V. A.</au><au>Zyuzina, N. A.</au><au>Kurbatova, Yu. A.</au><au>Tarbaev, D. A.</au><au>Chulichkov, A. I.</au><au>Shapkina, N. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological and Other Research Techniques for Almost Cyclic Time Series as Applied to СО2 Concentration Series</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>61</volume><issue>7</issue><spage>1106</spage><epage>1117</epage><pages>1106-1117</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Based on the morphological analysis techniques developed under the guidance of Yu.P. Pyt’ev, a method for filtering time series is proposed that is capable of detecting an almost cyclic component with a varying cycle length and varying series members within cycles. The effectiveness of the approach is illustrated as applied to decomposition of time series of atmospheric СО 2 concentrations. After filtering out the series component responsible for diurnal variability, the series residual becomes stationary, so mathematical statistical methods and Fourier analysis can be used for its further investigation. The results are verified by comparing them with Fourier analysis data. A cyclicity with a period longer than one day is studied using Fourier expansion and wavelet analysis of the original series.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542521070046</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2021-07, Vol.61 (7), p.1106-1117
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_2563476346
source SpringerNature Journals
subjects Computational Mathematics and Numerical Analysis
Filtration
Fourier analysis
Information Science
Mathematics
Mathematics and Statistics
Morphology
Statistical methods
Time series
Wavelet analysis
title Morphological and Other Research Techniques for Almost Cyclic Time Series as Applied to СО2 Concentration Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20and%20Other%20Research%20Techniques%20for%20Almost%20Cyclic%20Time%20Series%20as%20Applied%20to%20%D0%A1%D0%9E2%20Concentration%20Series&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Avilov,%20V.%20K.&rft.date=2021-07-01&rft.volume=61&rft.issue=7&rft.spage=1106&rft.epage=1117&rft.pages=1106-1117&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542521070046&rft_dat=%3Cproquest_cross%3E2563476346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563476346&rft_id=info:pmid/&rfr_iscdi=true