Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells
In this article, we present a novel nitrocellulose-based microfluidic chip with 3-dimensional (3D) printing technology to study the effect of oxygen gradient on cells. Compared with conventional polydimethylsiloxane (PDMS) chips of oxygen gradient for cell cultures that can only rely on fluorescence...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2021-09, Vol.146 (17), p.5255-5263 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5263 |
---|---|
container_issue | 17 |
container_start_page | 5255 |
container_title | Analyst (London) |
container_volume | 146 |
creator | Liu, Ping Fu, Longwen Song, Zhihua Man, Mingsan Yuan, Huamao Zheng, Xiaoli Kang, Qi Shen, Dazhong Song, Jinming Li, Bowei Chen, Lingxin |
description | In this article, we present a novel nitrocellulose-based microfluidic chip with 3-dimensional (3D) printing technology to study the effect of oxygen gradient on cells. Compared with conventional polydimethylsiloxane (PDMS) chips of oxygen gradient for cell cultures that can only rely on fluorescence microscope analysis, this hybrid nitrocellulose-based microfluidic platform can provide a variety of analysis methods for cells, including flow cytometry, western blot and RT-PCR, because the nitrocellulose-based chips with cells can be taken out from the growth chambers of 3D printed microfluidic chip and then used for cell collection or lysis. These advantages allow researchers to acquire more information and data on the basic biochemical and physiological processes of cell life. The effect of oxygen gradient on the zebrafish cells (ZF4) was used as a model to show the performance and application of our platform. Hypoxia caused the increase of intercellular reactive oxygen species (ROS) and accumulation of hypoxia-inducible factor 1α (HIF-1α). Hypoxia stimulated the transcription of hypoxia-responsive genes vascular endothelial growth factor (VEGF) and induced cell cycle arrest of ZF4 cells. The established platform is able to obtain more information from cells in response to different oxygen concentration, which has potential for analyzing the cells under a variety of pathological conditions.
The hybrid 3D printed/nitrocellulose-based microfluidic platform analyzed the effect of oxygen gradient on cells with a variety of methods. |
doi_str_mv | 10.1039/d1an00927c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563378296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557228847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-a588dbe80ff3b41afbfa8534f381c8db18f2789a187d2e9a2e7e2d06b17870043</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMouK5evAsBLyJU89E06VHWT1j0oueStpM1S5usSSvuyX_drCsKXmaYmR_D4z2Ejim5oISXly3VjpCSyWYHTSgv8kwIpnbRhBDCM1aIfB8dxLhMIyWCTNDn82sAwK3twUXrne66NV4F6wZosbND8A103dj5CFmtY1r2tgnedKNtbYNXnR6MDz1OBVv3DnGwCz1Yt8DDK2AwBpoBe4P9x3oBDi-Cbi24tHJ48zgeoj2juwhHP32KXm5vnmf32fzp7mF2Nc8aLsiQaaFUW4MixvA6p9rURivBc8MVbdKFKsOkKjVVsmVQagYSWEuKmkolCcn5FJ1t_66CfxuTzKq3caNAO_BjrJgQkjGlcpnQ03_o0o8hObOhCs6lYmWRqPMtldyIMYCpkmu9DuuKkmqTRXVNrx6_s5gl-GQLh9j8cn9Z8S8ESoia</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563378296</pqid></control><display><type>article</type><title>Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Liu, Ping ; Fu, Longwen ; Song, Zhihua ; Man, Mingsan ; Yuan, Huamao ; Zheng, Xiaoli ; Kang, Qi ; Shen, Dazhong ; Song, Jinming ; Li, Bowei ; Chen, Lingxin</creator><creatorcontrib>Liu, Ping ; Fu, Longwen ; Song, Zhihua ; Man, Mingsan ; Yuan, Huamao ; Zheng, Xiaoli ; Kang, Qi ; Shen, Dazhong ; Song, Jinming ; Li, Bowei ; Chen, Lingxin</creatorcontrib><description>In this article, we present a novel nitrocellulose-based microfluidic chip with 3-dimensional (3D) printing technology to study the effect of oxygen gradient on cells. Compared with conventional polydimethylsiloxane (PDMS) chips of oxygen gradient for cell cultures that can only rely on fluorescence microscope analysis, this hybrid nitrocellulose-based microfluidic platform can provide a variety of analysis methods for cells, including flow cytometry, western blot and RT-PCR, because the nitrocellulose-based chips with cells can be taken out from the growth chambers of 3D printed microfluidic chip and then used for cell collection or lysis. These advantages allow researchers to acquire more information and data on the basic biochemical and physiological processes of cell life. The effect of oxygen gradient on the zebrafish cells (ZF4) was used as a model to show the performance and application of our platform. Hypoxia caused the increase of intercellular reactive oxygen species (ROS) and accumulation of hypoxia-inducible factor 1α (HIF-1α). Hypoxia stimulated the transcription of hypoxia-responsive genes vascular endothelial growth factor (VEGF) and induced cell cycle arrest of ZF4 cells. The established platform is able to obtain more information from cells in response to different oxygen concentration, which has potential for analyzing the cells under a variety of pathological conditions.
The hybrid 3D printed/nitrocellulose-based microfluidic platform analyzed the effect of oxygen gradient on cells with a variety of methods.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/d1an00927c</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Cell cycle ; Cellulose esters ; Cellulose nitrate ; Flow cytometry ; Fluorescence ; Growth factors ; Hypoxia ; Microfluidics ; Oxygen ; Physiological effects ; Polydimethylsiloxane ; Three dimensional printing ; Zebrafish</subject><ispartof>Analyst (London), 2021-09, Vol.146 (17), p.5255-5263</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-a588dbe80ff3b41afbfa8534f381c8db18f2789a187d2e9a2e7e2d06b17870043</citedby><cites>FETCH-LOGICAL-c350t-a588dbe80ff3b41afbfa8534f381c8db18f2789a187d2e9a2e7e2d06b17870043</cites><orcidid>0000-0003-2774-0458 ; 0000-0001-6262-8248 ; 0000-0002-3764-3515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2832,2833,27926,27927</link.rule.ids></links><search><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Fu, Longwen</creatorcontrib><creatorcontrib>Song, Zhihua</creatorcontrib><creatorcontrib>Man, Mingsan</creatorcontrib><creatorcontrib>Yuan, Huamao</creatorcontrib><creatorcontrib>Zheng, Xiaoli</creatorcontrib><creatorcontrib>Kang, Qi</creatorcontrib><creatorcontrib>Shen, Dazhong</creatorcontrib><creatorcontrib>Song, Jinming</creatorcontrib><creatorcontrib>Li, Bowei</creatorcontrib><creatorcontrib>Chen, Lingxin</creatorcontrib><title>Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells</title><title>Analyst (London)</title><description>In this article, we present a novel nitrocellulose-based microfluidic chip with 3-dimensional (3D) printing technology to study the effect of oxygen gradient on cells. Compared with conventional polydimethylsiloxane (PDMS) chips of oxygen gradient for cell cultures that can only rely on fluorescence microscope analysis, this hybrid nitrocellulose-based microfluidic platform can provide a variety of analysis methods for cells, including flow cytometry, western blot and RT-PCR, because the nitrocellulose-based chips with cells can be taken out from the growth chambers of 3D printed microfluidic chip and then used for cell collection or lysis. These advantages allow researchers to acquire more information and data on the basic biochemical and physiological processes of cell life. The effect of oxygen gradient on the zebrafish cells (ZF4) was used as a model to show the performance and application of our platform. Hypoxia caused the increase of intercellular reactive oxygen species (ROS) and accumulation of hypoxia-inducible factor 1α (HIF-1α). Hypoxia stimulated the transcription of hypoxia-responsive genes vascular endothelial growth factor (VEGF) and induced cell cycle arrest of ZF4 cells. The established platform is able to obtain more information from cells in response to different oxygen concentration, which has potential for analyzing the cells under a variety of pathological conditions.
The hybrid 3D printed/nitrocellulose-based microfluidic platform analyzed the effect of oxygen gradient on cells with a variety of methods.</description><subject>Cell cycle</subject><subject>Cellulose esters</subject><subject>Cellulose nitrate</subject><subject>Flow cytometry</subject><subject>Fluorescence</subject><subject>Growth factors</subject><subject>Hypoxia</subject><subject>Microfluidics</subject><subject>Oxygen</subject><subject>Physiological effects</subject><subject>Polydimethylsiloxane</subject><subject>Three dimensional printing</subject><subject>Zebrafish</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LxDAQxYMouK5evAsBLyJU89E06VHWT1j0oueStpM1S5usSSvuyX_drCsKXmaYmR_D4z2Ejim5oISXly3VjpCSyWYHTSgv8kwIpnbRhBDCM1aIfB8dxLhMIyWCTNDn82sAwK3twUXrne66NV4F6wZosbND8A103dj5CFmtY1r2tgnedKNtbYNXnR6MDz1OBVv3DnGwCz1Yt8DDK2AwBpoBe4P9x3oBDi-Cbi24tHJ48zgeoj2juwhHP32KXm5vnmf32fzp7mF2Nc8aLsiQaaFUW4MixvA6p9rURivBc8MVbdKFKsOkKjVVsmVQagYSWEuKmkolCcn5FJ1t_66CfxuTzKq3caNAO_BjrJgQkjGlcpnQ03_o0o8hObOhCs6lYmWRqPMtldyIMYCpkmu9DuuKkmqTRXVNrx6_s5gl-GQLh9j8cn9Z8S8ESoia</recordid><startdate>20210907</startdate><enddate>20210907</enddate><creator>Liu, Ping</creator><creator>Fu, Longwen</creator><creator>Song, Zhihua</creator><creator>Man, Mingsan</creator><creator>Yuan, Huamao</creator><creator>Zheng, Xiaoli</creator><creator>Kang, Qi</creator><creator>Shen, Dazhong</creator><creator>Song, Jinming</creator><creator>Li, Bowei</creator><creator>Chen, Lingxin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2774-0458</orcidid><orcidid>https://orcid.org/0000-0001-6262-8248</orcidid><orcidid>https://orcid.org/0000-0002-3764-3515</orcidid></search><sort><creationdate>20210907</creationdate><title>Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells</title><author>Liu, Ping ; Fu, Longwen ; Song, Zhihua ; Man, Mingsan ; Yuan, Huamao ; Zheng, Xiaoli ; Kang, Qi ; Shen, Dazhong ; Song, Jinming ; Li, Bowei ; Chen, Lingxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-a588dbe80ff3b41afbfa8534f381c8db18f2789a187d2e9a2e7e2d06b17870043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell cycle</topic><topic>Cellulose esters</topic><topic>Cellulose nitrate</topic><topic>Flow cytometry</topic><topic>Fluorescence</topic><topic>Growth factors</topic><topic>Hypoxia</topic><topic>Microfluidics</topic><topic>Oxygen</topic><topic>Physiological effects</topic><topic>Polydimethylsiloxane</topic><topic>Three dimensional printing</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Fu, Longwen</creatorcontrib><creatorcontrib>Song, Zhihua</creatorcontrib><creatorcontrib>Man, Mingsan</creatorcontrib><creatorcontrib>Yuan, Huamao</creatorcontrib><creatorcontrib>Zheng, Xiaoli</creatorcontrib><creatorcontrib>Kang, Qi</creatorcontrib><creatorcontrib>Shen, Dazhong</creatorcontrib><creatorcontrib>Song, Jinming</creatorcontrib><creatorcontrib>Li, Bowei</creatorcontrib><creatorcontrib>Chen, Lingxin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ping</au><au>Fu, Longwen</au><au>Song, Zhihua</au><au>Man, Mingsan</au><au>Yuan, Huamao</au><au>Zheng, Xiaoli</au><au>Kang, Qi</au><au>Shen, Dazhong</au><au>Song, Jinming</au><au>Li, Bowei</au><au>Chen, Lingxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells</atitle><jtitle>Analyst (London)</jtitle><date>2021-09-07</date><risdate>2021</risdate><volume>146</volume><issue>17</issue><spage>5255</spage><epage>5263</epage><pages>5255-5263</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>In this article, we present a novel nitrocellulose-based microfluidic chip with 3-dimensional (3D) printing technology to study the effect of oxygen gradient on cells. Compared with conventional polydimethylsiloxane (PDMS) chips of oxygen gradient for cell cultures that can only rely on fluorescence microscope analysis, this hybrid nitrocellulose-based microfluidic platform can provide a variety of analysis methods for cells, including flow cytometry, western blot and RT-PCR, because the nitrocellulose-based chips with cells can be taken out from the growth chambers of 3D printed microfluidic chip and then used for cell collection or lysis. These advantages allow researchers to acquire more information and data on the basic biochemical and physiological processes of cell life. The effect of oxygen gradient on the zebrafish cells (ZF4) was used as a model to show the performance and application of our platform. Hypoxia caused the increase of intercellular reactive oxygen species (ROS) and accumulation of hypoxia-inducible factor 1α (HIF-1α). Hypoxia stimulated the transcription of hypoxia-responsive genes vascular endothelial growth factor (VEGF) and induced cell cycle arrest of ZF4 cells. The established platform is able to obtain more information from cells in response to different oxygen concentration, which has potential for analyzing the cells under a variety of pathological conditions.
The hybrid 3D printed/nitrocellulose-based microfluidic platform analyzed the effect of oxygen gradient on cells with a variety of methods.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1an00927c</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2774-0458</orcidid><orcidid>https://orcid.org/0000-0001-6262-8248</orcidid><orcidid>https://orcid.org/0000-0002-3764-3515</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2654 |
ispartof | Analyst (London), 2021-09, Vol.146 (17), p.5255-5263 |
issn | 0003-2654 1364-5528 |
language | eng |
recordid | cdi_proquest_journals_2563378296 |
source | Royal Society of Chemistry Journals Archive (1841-2007); Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Cell cycle Cellulose esters Cellulose nitrate Flow cytometry Fluorescence Growth factors Hypoxia Microfluidics Oxygen Physiological effects Polydimethylsiloxane Three dimensional printing Zebrafish |
title | Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20dimensionally%20printed%20nitrocellulose-based%20microfluidic%20platform%20for%20investigating%20the%20effect%20of%20oxygen%20gradient%20on%20cells&rft.jtitle=Analyst%20(London)&rft.au=Liu,%20Ping&rft.date=2021-09-07&rft.volume=146&rft.issue=17&rft.spage=5255&rft.epage=5263&rft.pages=5255-5263&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/d1an00927c&rft_dat=%3Cproquest_cross%3E2557228847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563378296&rft_id=info:pmid/&rfr_iscdi=true |