Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells

In this article, we present a novel nitrocellulose-based microfluidic chip with 3-dimensional (3D) printing technology to study the effect of oxygen gradient on cells. Compared with conventional polydimethylsiloxane (PDMS) chips of oxygen gradient for cell cultures that can only rely on fluorescence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2021-09, Vol.146 (17), p.5255-5263
Hauptverfasser: Liu, Ping, Fu, Longwen, Song, Zhihua, Man, Mingsan, Yuan, Huamao, Zheng, Xiaoli, Kang, Qi, Shen, Dazhong, Song, Jinming, Li, Bowei, Chen, Lingxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5263
container_issue 17
container_start_page 5255
container_title Analyst (London)
container_volume 146
creator Liu, Ping
Fu, Longwen
Song, Zhihua
Man, Mingsan
Yuan, Huamao
Zheng, Xiaoli
Kang, Qi
Shen, Dazhong
Song, Jinming
Li, Bowei
Chen, Lingxin
description In this article, we present a novel nitrocellulose-based microfluidic chip with 3-dimensional (3D) printing technology to study the effect of oxygen gradient on cells. Compared with conventional polydimethylsiloxane (PDMS) chips of oxygen gradient for cell cultures that can only rely on fluorescence microscope analysis, this hybrid nitrocellulose-based microfluidic platform can provide a variety of analysis methods for cells, including flow cytometry, western blot and RT-PCR, because the nitrocellulose-based chips with cells can be taken out from the growth chambers of 3D printed microfluidic chip and then used for cell collection or lysis. These advantages allow researchers to acquire more information and data on the basic biochemical and physiological processes of cell life. The effect of oxygen gradient on the zebrafish cells (ZF4) was used as a model to show the performance and application of our platform. Hypoxia caused the increase of intercellular reactive oxygen species (ROS) and accumulation of hypoxia-inducible factor 1α (HIF-1α). Hypoxia stimulated the transcription of hypoxia-responsive genes vascular endothelial growth factor (VEGF) and induced cell cycle arrest of ZF4 cells. The established platform is able to obtain more information from cells in response to different oxygen concentration, which has potential for analyzing the cells under a variety of pathological conditions. The hybrid 3D printed/nitrocellulose-based microfluidic platform analyzed the effect of oxygen gradient on cells with a variety of methods.
doi_str_mv 10.1039/d1an00927c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563378296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557228847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-a588dbe80ff3b41afbfa8534f381c8db18f2789a187d2e9a2e7e2d06b17870043</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMouK5evAsBLyJU89E06VHWT1j0oueStpM1S5usSSvuyX_drCsKXmaYmR_D4z2Ejim5oISXly3VjpCSyWYHTSgv8kwIpnbRhBDCM1aIfB8dxLhMIyWCTNDn82sAwK3twUXrne66NV4F6wZosbND8A103dj5CFmtY1r2tgnedKNtbYNXnR6MDz1OBVv3DnGwCz1Yt8DDK2AwBpoBe4P9x3oBDi-Cbi24tHJ48zgeoj2juwhHP32KXm5vnmf32fzp7mF2Nc8aLsiQaaFUW4MixvA6p9rURivBc8MVbdKFKsOkKjVVsmVQagYSWEuKmkolCcn5FJ1t_66CfxuTzKq3caNAO_BjrJgQkjGlcpnQ03_o0o8hObOhCs6lYmWRqPMtldyIMYCpkmu9DuuKkmqTRXVNrx6_s5gl-GQLh9j8cn9Z8S8ESoia</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563378296</pqid></control><display><type>article</type><title>Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Liu, Ping ; Fu, Longwen ; Song, Zhihua ; Man, Mingsan ; Yuan, Huamao ; Zheng, Xiaoli ; Kang, Qi ; Shen, Dazhong ; Song, Jinming ; Li, Bowei ; Chen, Lingxin</creator><creatorcontrib>Liu, Ping ; Fu, Longwen ; Song, Zhihua ; Man, Mingsan ; Yuan, Huamao ; Zheng, Xiaoli ; Kang, Qi ; Shen, Dazhong ; Song, Jinming ; Li, Bowei ; Chen, Lingxin</creatorcontrib><description>In this article, we present a novel nitrocellulose-based microfluidic chip with 3-dimensional (3D) printing technology to study the effect of oxygen gradient on cells. Compared with conventional polydimethylsiloxane (PDMS) chips of oxygen gradient for cell cultures that can only rely on fluorescence microscope analysis, this hybrid nitrocellulose-based microfluidic platform can provide a variety of analysis methods for cells, including flow cytometry, western blot and RT-PCR, because the nitrocellulose-based chips with cells can be taken out from the growth chambers of 3D printed microfluidic chip and then used for cell collection or lysis. These advantages allow researchers to acquire more information and data on the basic biochemical and physiological processes of cell life. The effect of oxygen gradient on the zebrafish cells (ZF4) was used as a model to show the performance and application of our platform. Hypoxia caused the increase of intercellular reactive oxygen species (ROS) and accumulation of hypoxia-inducible factor 1α (HIF-1α). Hypoxia stimulated the transcription of hypoxia-responsive genes vascular endothelial growth factor (VEGF) and induced cell cycle arrest of ZF4 cells. The established platform is able to obtain more information from cells in response to different oxygen concentration, which has potential for analyzing the cells under a variety of pathological conditions. The hybrid 3D printed/nitrocellulose-based microfluidic platform analyzed the effect of oxygen gradient on cells with a variety of methods.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/d1an00927c</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Cell cycle ; Cellulose esters ; Cellulose nitrate ; Flow cytometry ; Fluorescence ; Growth factors ; Hypoxia ; Microfluidics ; Oxygen ; Physiological effects ; Polydimethylsiloxane ; Three dimensional printing ; Zebrafish</subject><ispartof>Analyst (London), 2021-09, Vol.146 (17), p.5255-5263</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-a588dbe80ff3b41afbfa8534f381c8db18f2789a187d2e9a2e7e2d06b17870043</citedby><cites>FETCH-LOGICAL-c350t-a588dbe80ff3b41afbfa8534f381c8db18f2789a187d2e9a2e7e2d06b17870043</cites><orcidid>0000-0003-2774-0458 ; 0000-0001-6262-8248 ; 0000-0002-3764-3515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2832,2833,27926,27927</link.rule.ids></links><search><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Fu, Longwen</creatorcontrib><creatorcontrib>Song, Zhihua</creatorcontrib><creatorcontrib>Man, Mingsan</creatorcontrib><creatorcontrib>Yuan, Huamao</creatorcontrib><creatorcontrib>Zheng, Xiaoli</creatorcontrib><creatorcontrib>Kang, Qi</creatorcontrib><creatorcontrib>Shen, Dazhong</creatorcontrib><creatorcontrib>Song, Jinming</creatorcontrib><creatorcontrib>Li, Bowei</creatorcontrib><creatorcontrib>Chen, Lingxin</creatorcontrib><title>Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells</title><title>Analyst (London)</title><description>In this article, we present a novel nitrocellulose-based microfluidic chip with 3-dimensional (3D) printing technology to study the effect of oxygen gradient on cells. Compared with conventional polydimethylsiloxane (PDMS) chips of oxygen gradient for cell cultures that can only rely on fluorescence microscope analysis, this hybrid nitrocellulose-based microfluidic platform can provide a variety of analysis methods for cells, including flow cytometry, western blot and RT-PCR, because the nitrocellulose-based chips with cells can be taken out from the growth chambers of 3D printed microfluidic chip and then used for cell collection or lysis. These advantages allow researchers to acquire more information and data on the basic biochemical and physiological processes of cell life. The effect of oxygen gradient on the zebrafish cells (ZF4) was used as a model to show the performance and application of our platform. Hypoxia caused the increase of intercellular reactive oxygen species (ROS) and accumulation of hypoxia-inducible factor 1α (HIF-1α). Hypoxia stimulated the transcription of hypoxia-responsive genes vascular endothelial growth factor (VEGF) and induced cell cycle arrest of ZF4 cells. The established platform is able to obtain more information from cells in response to different oxygen concentration, which has potential for analyzing the cells under a variety of pathological conditions. The hybrid 3D printed/nitrocellulose-based microfluidic platform analyzed the effect of oxygen gradient on cells with a variety of methods.</description><subject>Cell cycle</subject><subject>Cellulose esters</subject><subject>Cellulose nitrate</subject><subject>Flow cytometry</subject><subject>Fluorescence</subject><subject>Growth factors</subject><subject>Hypoxia</subject><subject>Microfluidics</subject><subject>Oxygen</subject><subject>Physiological effects</subject><subject>Polydimethylsiloxane</subject><subject>Three dimensional printing</subject><subject>Zebrafish</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LxDAQxYMouK5evAsBLyJU89E06VHWT1j0oueStpM1S5usSSvuyX_drCsKXmaYmR_D4z2Ejim5oISXly3VjpCSyWYHTSgv8kwIpnbRhBDCM1aIfB8dxLhMIyWCTNDn82sAwK3twUXrne66NV4F6wZosbND8A103dj5CFmtY1r2tgnedKNtbYNXnR6MDz1OBVv3DnGwCz1Yt8DDK2AwBpoBe4P9x3oBDi-Cbi24tHJ48zgeoj2juwhHP32KXm5vnmf32fzp7mF2Nc8aLsiQaaFUW4MixvA6p9rURivBc8MVbdKFKsOkKjVVsmVQagYSWEuKmkolCcn5FJ1t_66CfxuTzKq3caNAO_BjrJgQkjGlcpnQ03_o0o8hObOhCs6lYmWRqPMtldyIMYCpkmu9DuuKkmqTRXVNrx6_s5gl-GQLh9j8cn9Z8S8ESoia</recordid><startdate>20210907</startdate><enddate>20210907</enddate><creator>Liu, Ping</creator><creator>Fu, Longwen</creator><creator>Song, Zhihua</creator><creator>Man, Mingsan</creator><creator>Yuan, Huamao</creator><creator>Zheng, Xiaoli</creator><creator>Kang, Qi</creator><creator>Shen, Dazhong</creator><creator>Song, Jinming</creator><creator>Li, Bowei</creator><creator>Chen, Lingxin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2774-0458</orcidid><orcidid>https://orcid.org/0000-0001-6262-8248</orcidid><orcidid>https://orcid.org/0000-0002-3764-3515</orcidid></search><sort><creationdate>20210907</creationdate><title>Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells</title><author>Liu, Ping ; Fu, Longwen ; Song, Zhihua ; Man, Mingsan ; Yuan, Huamao ; Zheng, Xiaoli ; Kang, Qi ; Shen, Dazhong ; Song, Jinming ; Li, Bowei ; Chen, Lingxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-a588dbe80ff3b41afbfa8534f381c8db18f2789a187d2e9a2e7e2d06b17870043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell cycle</topic><topic>Cellulose esters</topic><topic>Cellulose nitrate</topic><topic>Flow cytometry</topic><topic>Fluorescence</topic><topic>Growth factors</topic><topic>Hypoxia</topic><topic>Microfluidics</topic><topic>Oxygen</topic><topic>Physiological effects</topic><topic>Polydimethylsiloxane</topic><topic>Three dimensional printing</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Fu, Longwen</creatorcontrib><creatorcontrib>Song, Zhihua</creatorcontrib><creatorcontrib>Man, Mingsan</creatorcontrib><creatorcontrib>Yuan, Huamao</creatorcontrib><creatorcontrib>Zheng, Xiaoli</creatorcontrib><creatorcontrib>Kang, Qi</creatorcontrib><creatorcontrib>Shen, Dazhong</creatorcontrib><creatorcontrib>Song, Jinming</creatorcontrib><creatorcontrib>Li, Bowei</creatorcontrib><creatorcontrib>Chen, Lingxin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ping</au><au>Fu, Longwen</au><au>Song, Zhihua</au><au>Man, Mingsan</au><au>Yuan, Huamao</au><au>Zheng, Xiaoli</au><au>Kang, Qi</au><au>Shen, Dazhong</au><au>Song, Jinming</au><au>Li, Bowei</au><au>Chen, Lingxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells</atitle><jtitle>Analyst (London)</jtitle><date>2021-09-07</date><risdate>2021</risdate><volume>146</volume><issue>17</issue><spage>5255</spage><epage>5263</epage><pages>5255-5263</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>In this article, we present a novel nitrocellulose-based microfluidic chip with 3-dimensional (3D) printing technology to study the effect of oxygen gradient on cells. Compared with conventional polydimethylsiloxane (PDMS) chips of oxygen gradient for cell cultures that can only rely on fluorescence microscope analysis, this hybrid nitrocellulose-based microfluidic platform can provide a variety of analysis methods for cells, including flow cytometry, western blot and RT-PCR, because the nitrocellulose-based chips with cells can be taken out from the growth chambers of 3D printed microfluidic chip and then used for cell collection or lysis. These advantages allow researchers to acquire more information and data on the basic biochemical and physiological processes of cell life. The effect of oxygen gradient on the zebrafish cells (ZF4) was used as a model to show the performance and application of our platform. Hypoxia caused the increase of intercellular reactive oxygen species (ROS) and accumulation of hypoxia-inducible factor 1α (HIF-1α). Hypoxia stimulated the transcription of hypoxia-responsive genes vascular endothelial growth factor (VEGF) and induced cell cycle arrest of ZF4 cells. The established platform is able to obtain more information from cells in response to different oxygen concentration, which has potential for analyzing the cells under a variety of pathological conditions. The hybrid 3D printed/nitrocellulose-based microfluidic platform analyzed the effect of oxygen gradient on cells with a variety of methods.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1an00927c</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2774-0458</orcidid><orcidid>https://orcid.org/0000-0001-6262-8248</orcidid><orcidid>https://orcid.org/0000-0002-3764-3515</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2654
ispartof Analyst (London), 2021-09, Vol.146 (17), p.5255-5263
issn 0003-2654
1364-5528
language eng
recordid cdi_proquest_journals_2563378296
source Royal Society of Chemistry Journals Archive (1841-2007); Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Cell cycle
Cellulose esters
Cellulose nitrate
Flow cytometry
Fluorescence
Growth factors
Hypoxia
Microfluidics
Oxygen
Physiological effects
Polydimethylsiloxane
Three dimensional printing
Zebrafish
title Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20dimensionally%20printed%20nitrocellulose-based%20microfluidic%20platform%20for%20investigating%20the%20effect%20of%20oxygen%20gradient%20on%20cells&rft.jtitle=Analyst%20(London)&rft.au=Liu,%20Ping&rft.date=2021-09-07&rft.volume=146&rft.issue=17&rft.spage=5255&rft.epage=5263&rft.pages=5255-5263&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/d1an00927c&rft_dat=%3Cproquest_cross%3E2557228847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563378296&rft_id=info:pmid/&rfr_iscdi=true