Hybrid Strategy of Multiple Optimization Algorithms Applied to 3-D Terrain Node Coverage of Wireless Sensor Network
The key to the problem of node coverage in wireless sensor networks (WSN) is to deploy a limited number of sensors to achieve maximum coverage. This paper studies the hybrid strategies of multiple evolutionary algorithms, and applies them to the problem of WSN node coverage. We first proposed the hy...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2021, Vol.2021 (1) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Wireless communications and mobile computing |
container_volume | 2021 |
creator | Zhang, Li-Gang Fan, Fang Chu, Shu-Chuan Garg, Akhil Pan, Jeng-Shyang |
description | The key to the problem of node coverage in wireless sensor networks (WSN) is to deploy a limited number of sensors to achieve maximum coverage. This paper studies the hybrid strategies of multiple evolutionary algorithms, and applies them to the problem of WSN node coverage. We first proposed the hybrid algorithm SFLA-WOA (SWOA) based on Shuffled Frog Leaping Algorithm (SFLA) and Whale Optimization Algorithm (WOA). The SWOA algorithm combines the advantages of SFLA and WOA; that is, it retains the unique evolution model of WOA and also has the excellent co-evolution capability of SFLA. Secondly, using the mutation, crossover and selection operations of the differential evolution (DE) algorithm to further optimize this hybrid algorithm, the SWOA-based SFLA-WOA-DE (SWOAD) algorithm is proposed. In addition, the performance of SWOA and SWOAD has been tested by 30 benchmark functions in the CEC 2017 test set. Experimental results show that the optimization effects of these two algorithms are very outstanding. Finally, the simulation results show that the optimization algorithm proposed in this paper has a good effect on improving the signal coverage of WSN under the actual three-dimensional terrain. |
doi_str_mv | 10.1155/2021/6690824 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563359889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563359889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-491ad09d0e7b9bcdbdbe5e0cd44d08a5c25b7c732481e2057f47af086c1176fd3</originalsourceid><addsrcrecordid>eNp90E9PwjAYBvDGaCKiNz9AE486add13Y4E_2CCcADjsenWd1Ac62yLBD-9IxiPnt738MvzJA9C15TcU8r5ICYxHaRpTrI4OUE9yhmJslSI078_zc_RhfdrQgjrcA_58b5wRuN5cCrAco9thV-3dTBtDXjWBrMx3yoY2-BhvbTOhNXG42Hb1gY0Dhaz6AEvwDllGjy1GvDIfoFTSzgEvRsHNXiP59B46_AUws66j0t0Vqnaw9Xv7aO3p8fFaBxNZs8vo-EkKhkTIUpyqjTJNQFR5EWpC10AB1LqJNEkU7yMeSFKweIkoxATLqpEqIpkaUmpSCvN-ujmmNs6-7kFH-Tabl3TVcqYp4zxPMvyTt0dVems9w4q2TqzUW4vKZGHWeVhVvk7a8dvj3xlGq125n_9A_1Cd-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563359889</pqid></control><display><type>article</type><title>Hybrid Strategy of Multiple Optimization Algorithms Applied to 3-D Terrain Node Coverage of Wireless Sensor Network</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Li-Gang ; Fan, Fang ; Chu, Shu-Chuan ; Garg, Akhil ; Pan, Jeng-Shyang</creator><contributor>Cuthbert, Laurie ; Laurie Cuthbert</contributor><creatorcontrib>Zhang, Li-Gang ; Fan, Fang ; Chu, Shu-Chuan ; Garg, Akhil ; Pan, Jeng-Shyang ; Cuthbert, Laurie ; Laurie Cuthbert</creatorcontrib><description>The key to the problem of node coverage in wireless sensor networks (WSN) is to deploy a limited number of sensors to achieve maximum coverage. This paper studies the hybrid strategies of multiple evolutionary algorithms, and applies them to the problem of WSN node coverage. We first proposed the hybrid algorithm SFLA-WOA (SWOA) based on Shuffled Frog Leaping Algorithm (SFLA) and Whale Optimization Algorithm (WOA). The SWOA algorithm combines the advantages of SFLA and WOA; that is, it retains the unique evolution model of WOA and also has the excellent co-evolution capability of SFLA. Secondly, using the mutation, crossover and selection operations of the differential evolution (DE) algorithm to further optimize this hybrid algorithm, the SWOA-based SFLA-WOA-DE (SWOAD) algorithm is proposed. In addition, the performance of SWOA and SWOAD has been tested by 30 benchmark functions in the CEC 2017 test set. Experimental results show that the optimization effects of these two algorithms are very outstanding. Finally, the simulation results show that the optimization algorithm proposed in this paper has a good effect on improving the signal coverage of WSN under the actual three-dimensional terrain.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2021/6690824</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Communication ; Evolutionary algorithms ; Evolutionary computation ; Genetic algorithms ; Heuristic ; Information industry ; Internet of Things ; Mutation ; Nodes ; Optimization ; Optimization algorithms ; Population ; Sensors ; Terrain ; Wireless networks ; Wireless sensor networks</subject><ispartof>Wireless communications and mobile computing, 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Li-Gang Zhang et al.</rights><rights>Copyright © 2021 Li-Gang Zhang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-491ad09d0e7b9bcdbdbe5e0cd44d08a5c25b7c732481e2057f47af086c1176fd3</citedby><cites>FETCH-LOGICAL-c337t-491ad09d0e7b9bcdbdbe5e0cd44d08a5c25b7c732481e2057f47af086c1176fd3</cites><orcidid>0000-0002-8756-2887 ; 0000-0001-5731-4105 ; 0000-0002-3128-9025 ; 0000-0001-5287-017X ; 0000-0003-2117-0618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Cuthbert, Laurie</contributor><contributor>Laurie Cuthbert</contributor><creatorcontrib>Zhang, Li-Gang</creatorcontrib><creatorcontrib>Fan, Fang</creatorcontrib><creatorcontrib>Chu, Shu-Chuan</creatorcontrib><creatorcontrib>Garg, Akhil</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><title>Hybrid Strategy of Multiple Optimization Algorithms Applied to 3-D Terrain Node Coverage of Wireless Sensor Network</title><title>Wireless communications and mobile computing</title><description>The key to the problem of node coverage in wireless sensor networks (WSN) is to deploy a limited number of sensors to achieve maximum coverage. This paper studies the hybrid strategies of multiple evolutionary algorithms, and applies them to the problem of WSN node coverage. We first proposed the hybrid algorithm SFLA-WOA (SWOA) based on Shuffled Frog Leaping Algorithm (SFLA) and Whale Optimization Algorithm (WOA). The SWOA algorithm combines the advantages of SFLA and WOA; that is, it retains the unique evolution model of WOA and also has the excellent co-evolution capability of SFLA. Secondly, using the mutation, crossover and selection operations of the differential evolution (DE) algorithm to further optimize this hybrid algorithm, the SWOA-based SFLA-WOA-DE (SWOAD) algorithm is proposed. In addition, the performance of SWOA and SWOAD has been tested by 30 benchmark functions in the CEC 2017 test set. Experimental results show that the optimization effects of these two algorithms are very outstanding. Finally, the simulation results show that the optimization algorithm proposed in this paper has a good effect on improving the signal coverage of WSN under the actual three-dimensional terrain.</description><subject>Communication</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Information industry</subject><subject>Internet of Things</subject><subject>Mutation</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Population</subject><subject>Sensors</subject><subject>Terrain</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp90E9PwjAYBvDGaCKiNz9AE486add13Y4E_2CCcADjsenWd1Ac62yLBD-9IxiPnt738MvzJA9C15TcU8r5ICYxHaRpTrI4OUE9yhmJslSI078_zc_RhfdrQgjrcA_58b5wRuN5cCrAco9thV-3dTBtDXjWBrMx3yoY2-BhvbTOhNXG42Hb1gY0Dhaz6AEvwDllGjy1GvDIfoFTSzgEvRsHNXiP59B46_AUws66j0t0Vqnaw9Xv7aO3p8fFaBxNZs8vo-EkKhkTIUpyqjTJNQFR5EWpC10AB1LqJNEkU7yMeSFKweIkoxATLqpEqIpkaUmpSCvN-ujmmNs6-7kFH-Tabl3TVcqYp4zxPMvyTt0dVems9w4q2TqzUW4vKZGHWeVhVvk7a8dvj3xlGq125n_9A_1Cd-8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhang, Li-Gang</creator><creator>Fan, Fang</creator><creator>Chu, Shu-Chuan</creator><creator>Garg, Akhil</creator><creator>Pan, Jeng-Shyang</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8756-2887</orcidid><orcidid>https://orcid.org/0000-0001-5731-4105</orcidid><orcidid>https://orcid.org/0000-0002-3128-9025</orcidid><orcidid>https://orcid.org/0000-0001-5287-017X</orcidid><orcidid>https://orcid.org/0000-0003-2117-0618</orcidid></search><sort><creationdate>2021</creationdate><title>Hybrid Strategy of Multiple Optimization Algorithms Applied to 3-D Terrain Node Coverage of Wireless Sensor Network</title><author>Zhang, Li-Gang ; Fan, Fang ; Chu, Shu-Chuan ; Garg, Akhil ; Pan, Jeng-Shyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-491ad09d0e7b9bcdbdbe5e0cd44d08a5c25b7c732481e2057f47af086c1176fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communication</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Information industry</topic><topic>Internet of Things</topic><topic>Mutation</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Population</topic><topic>Sensors</topic><topic>Terrain</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Li-Gang</creatorcontrib><creatorcontrib>Fan, Fang</creatorcontrib><creatorcontrib>Chu, Shu-Chuan</creatorcontrib><creatorcontrib>Garg, Akhil</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Li-Gang</au><au>Fan, Fang</au><au>Chu, Shu-Chuan</au><au>Garg, Akhil</au><au>Pan, Jeng-Shyang</au><au>Cuthbert, Laurie</au><au>Laurie Cuthbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Strategy of Multiple Optimization Algorithms Applied to 3-D Terrain Node Coverage of Wireless Sensor Network</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>The key to the problem of node coverage in wireless sensor networks (WSN) is to deploy a limited number of sensors to achieve maximum coverage. This paper studies the hybrid strategies of multiple evolutionary algorithms, and applies them to the problem of WSN node coverage. We first proposed the hybrid algorithm SFLA-WOA (SWOA) based on Shuffled Frog Leaping Algorithm (SFLA) and Whale Optimization Algorithm (WOA). The SWOA algorithm combines the advantages of SFLA and WOA; that is, it retains the unique evolution model of WOA and also has the excellent co-evolution capability of SFLA. Secondly, using the mutation, crossover and selection operations of the differential evolution (DE) algorithm to further optimize this hybrid algorithm, the SWOA-based SFLA-WOA-DE (SWOAD) algorithm is proposed. In addition, the performance of SWOA and SWOAD has been tested by 30 benchmark functions in the CEC 2017 test set. Experimental results show that the optimization effects of these two algorithms are very outstanding. Finally, the simulation results show that the optimization algorithm proposed in this paper has a good effect on improving the signal coverage of WSN under the actual three-dimensional terrain.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2021/6690824</doi><orcidid>https://orcid.org/0000-0002-8756-2887</orcidid><orcidid>https://orcid.org/0000-0001-5731-4105</orcidid><orcidid>https://orcid.org/0000-0002-3128-9025</orcidid><orcidid>https://orcid.org/0000-0001-5287-017X</orcidid><orcidid>https://orcid.org/0000-0003-2117-0618</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2021, Vol.2021 (1) |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2563359889 |
source | Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Communication Evolutionary algorithms Evolutionary computation Genetic algorithms Heuristic Information industry Internet of Things Mutation Nodes Optimization Optimization algorithms Population Sensors Terrain Wireless networks Wireless sensor networks |
title | Hybrid Strategy of Multiple Optimization Algorithms Applied to 3-D Terrain Node Coverage of Wireless Sensor Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Strategy%20of%20Multiple%20Optimization%20Algorithms%20Applied%20to%203-D%20Terrain%20Node%20Coverage%20of%20Wireless%20Sensor%20Network&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Zhang,%20Li-Gang&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2021/6690824&rft_dat=%3Cproquest_cross%3E2563359889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563359889&rft_id=info:pmid/&rfr_iscdi=true |