Hybrid Strategy of Multiple Optimization Algorithms Applied to 3-D Terrain Node Coverage of Wireless Sensor Network

The key to the problem of node coverage in wireless sensor networks (WSN) is to deploy a limited number of sensors to achieve maximum coverage. This paper studies the hybrid strategies of multiple evolutionary algorithms, and applies them to the problem of WSN node coverage. We first proposed the hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2021, Vol.2021 (1)
Hauptverfasser: Zhang, Li-Gang, Fan, Fang, Chu, Shu-Chuan, Garg, Akhil, Pan, Jeng-Shyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Wireless communications and mobile computing
container_volume 2021
creator Zhang, Li-Gang
Fan, Fang
Chu, Shu-Chuan
Garg, Akhil
Pan, Jeng-Shyang
description The key to the problem of node coverage in wireless sensor networks (WSN) is to deploy a limited number of sensors to achieve maximum coverage. This paper studies the hybrid strategies of multiple evolutionary algorithms, and applies them to the problem of WSN node coverage. We first proposed the hybrid algorithm SFLA-WOA (SWOA) based on Shuffled Frog Leaping Algorithm (SFLA) and Whale Optimization Algorithm (WOA). The SWOA algorithm combines the advantages of SFLA and WOA; that is, it retains the unique evolution model of WOA and also has the excellent co-evolution capability of SFLA. Secondly, using the mutation, crossover and selection operations of the differential evolution (DE) algorithm to further optimize this hybrid algorithm, the SWOA-based SFLA-WOA-DE (SWOAD) algorithm is proposed. In addition, the performance of SWOA and SWOAD has been tested by 30 benchmark functions in the CEC 2017 test set. Experimental results show that the optimization effects of these two algorithms are very outstanding. Finally, the simulation results show that the optimization algorithm proposed in this paper has a good effect on improving the signal coverage of WSN under the actual three-dimensional terrain.
doi_str_mv 10.1155/2021/6690824
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563359889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563359889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-491ad09d0e7b9bcdbdbe5e0cd44d08a5c25b7c732481e2057f47af086c1176fd3</originalsourceid><addsrcrecordid>eNp90E9PwjAYBvDGaCKiNz9AE486add13Y4E_2CCcADjsenWd1Ac62yLBD-9IxiPnt738MvzJA9C15TcU8r5ICYxHaRpTrI4OUE9yhmJslSI078_zc_RhfdrQgjrcA_58b5wRuN5cCrAco9thV-3dTBtDXjWBrMx3yoY2-BhvbTOhNXG42Hb1gY0Dhaz6AEvwDllGjy1GvDIfoFTSzgEvRsHNXiP59B46_AUws66j0t0Vqnaw9Xv7aO3p8fFaBxNZs8vo-EkKhkTIUpyqjTJNQFR5EWpC10AB1LqJNEkU7yMeSFKweIkoxATLqpEqIpkaUmpSCvN-ujmmNs6-7kFH-Tabl3TVcqYp4zxPMvyTt0dVems9w4q2TqzUW4vKZGHWeVhVvk7a8dvj3xlGq125n_9A_1Cd-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563359889</pqid></control><display><type>article</type><title>Hybrid Strategy of Multiple Optimization Algorithms Applied to 3-D Terrain Node Coverage of Wireless Sensor Network</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Li-Gang ; Fan, Fang ; Chu, Shu-Chuan ; Garg, Akhil ; Pan, Jeng-Shyang</creator><contributor>Cuthbert, Laurie ; Laurie Cuthbert</contributor><creatorcontrib>Zhang, Li-Gang ; Fan, Fang ; Chu, Shu-Chuan ; Garg, Akhil ; Pan, Jeng-Shyang ; Cuthbert, Laurie ; Laurie Cuthbert</creatorcontrib><description>The key to the problem of node coverage in wireless sensor networks (WSN) is to deploy a limited number of sensors to achieve maximum coverage. This paper studies the hybrid strategies of multiple evolutionary algorithms, and applies them to the problem of WSN node coverage. We first proposed the hybrid algorithm SFLA-WOA (SWOA) based on Shuffled Frog Leaping Algorithm (SFLA) and Whale Optimization Algorithm (WOA). The SWOA algorithm combines the advantages of SFLA and WOA; that is, it retains the unique evolution model of WOA and also has the excellent co-evolution capability of SFLA. Secondly, using the mutation, crossover and selection operations of the differential evolution (DE) algorithm to further optimize this hybrid algorithm, the SWOA-based SFLA-WOA-DE (SWOAD) algorithm is proposed. In addition, the performance of SWOA and SWOAD has been tested by 30 benchmark functions in the CEC 2017 test set. Experimental results show that the optimization effects of these two algorithms are very outstanding. Finally, the simulation results show that the optimization algorithm proposed in this paper has a good effect on improving the signal coverage of WSN under the actual three-dimensional terrain.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2021/6690824</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Communication ; Evolutionary algorithms ; Evolutionary computation ; Genetic algorithms ; Heuristic ; Information industry ; Internet of Things ; Mutation ; Nodes ; Optimization ; Optimization algorithms ; Population ; Sensors ; Terrain ; Wireless networks ; Wireless sensor networks</subject><ispartof>Wireless communications and mobile computing, 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Li-Gang Zhang et al.</rights><rights>Copyright © 2021 Li-Gang Zhang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-491ad09d0e7b9bcdbdbe5e0cd44d08a5c25b7c732481e2057f47af086c1176fd3</citedby><cites>FETCH-LOGICAL-c337t-491ad09d0e7b9bcdbdbe5e0cd44d08a5c25b7c732481e2057f47af086c1176fd3</cites><orcidid>0000-0002-8756-2887 ; 0000-0001-5731-4105 ; 0000-0002-3128-9025 ; 0000-0001-5287-017X ; 0000-0003-2117-0618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Cuthbert, Laurie</contributor><contributor>Laurie Cuthbert</contributor><creatorcontrib>Zhang, Li-Gang</creatorcontrib><creatorcontrib>Fan, Fang</creatorcontrib><creatorcontrib>Chu, Shu-Chuan</creatorcontrib><creatorcontrib>Garg, Akhil</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><title>Hybrid Strategy of Multiple Optimization Algorithms Applied to 3-D Terrain Node Coverage of Wireless Sensor Network</title><title>Wireless communications and mobile computing</title><description>The key to the problem of node coverage in wireless sensor networks (WSN) is to deploy a limited number of sensors to achieve maximum coverage. This paper studies the hybrid strategies of multiple evolutionary algorithms, and applies them to the problem of WSN node coverage. We first proposed the hybrid algorithm SFLA-WOA (SWOA) based on Shuffled Frog Leaping Algorithm (SFLA) and Whale Optimization Algorithm (WOA). The SWOA algorithm combines the advantages of SFLA and WOA; that is, it retains the unique evolution model of WOA and also has the excellent co-evolution capability of SFLA. Secondly, using the mutation, crossover and selection operations of the differential evolution (DE) algorithm to further optimize this hybrid algorithm, the SWOA-based SFLA-WOA-DE (SWOAD) algorithm is proposed. In addition, the performance of SWOA and SWOAD has been tested by 30 benchmark functions in the CEC 2017 test set. Experimental results show that the optimization effects of these two algorithms are very outstanding. Finally, the simulation results show that the optimization algorithm proposed in this paper has a good effect on improving the signal coverage of WSN under the actual three-dimensional terrain.</description><subject>Communication</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Information industry</subject><subject>Internet of Things</subject><subject>Mutation</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Population</subject><subject>Sensors</subject><subject>Terrain</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp90E9PwjAYBvDGaCKiNz9AE486add13Y4E_2CCcADjsenWd1Ac62yLBD-9IxiPnt738MvzJA9C15TcU8r5ICYxHaRpTrI4OUE9yhmJslSI078_zc_RhfdrQgjrcA_58b5wRuN5cCrAco9thV-3dTBtDXjWBrMx3yoY2-BhvbTOhNXG42Hb1gY0Dhaz6AEvwDllGjy1GvDIfoFTSzgEvRsHNXiP59B46_AUws66j0t0Vqnaw9Xv7aO3p8fFaBxNZs8vo-EkKhkTIUpyqjTJNQFR5EWpC10AB1LqJNEkU7yMeSFKweIkoxATLqpEqIpkaUmpSCvN-ujmmNs6-7kFH-Tabl3TVcqYp4zxPMvyTt0dVems9w4q2TqzUW4vKZGHWeVhVvk7a8dvj3xlGq125n_9A_1Cd-8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhang, Li-Gang</creator><creator>Fan, Fang</creator><creator>Chu, Shu-Chuan</creator><creator>Garg, Akhil</creator><creator>Pan, Jeng-Shyang</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8756-2887</orcidid><orcidid>https://orcid.org/0000-0001-5731-4105</orcidid><orcidid>https://orcid.org/0000-0002-3128-9025</orcidid><orcidid>https://orcid.org/0000-0001-5287-017X</orcidid><orcidid>https://orcid.org/0000-0003-2117-0618</orcidid></search><sort><creationdate>2021</creationdate><title>Hybrid Strategy of Multiple Optimization Algorithms Applied to 3-D Terrain Node Coverage of Wireless Sensor Network</title><author>Zhang, Li-Gang ; Fan, Fang ; Chu, Shu-Chuan ; Garg, Akhil ; Pan, Jeng-Shyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-491ad09d0e7b9bcdbdbe5e0cd44d08a5c25b7c732481e2057f47af086c1176fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communication</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Information industry</topic><topic>Internet of Things</topic><topic>Mutation</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Population</topic><topic>Sensors</topic><topic>Terrain</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Li-Gang</creatorcontrib><creatorcontrib>Fan, Fang</creatorcontrib><creatorcontrib>Chu, Shu-Chuan</creatorcontrib><creatorcontrib>Garg, Akhil</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Li-Gang</au><au>Fan, Fang</au><au>Chu, Shu-Chuan</au><au>Garg, Akhil</au><au>Pan, Jeng-Shyang</au><au>Cuthbert, Laurie</au><au>Laurie Cuthbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Strategy of Multiple Optimization Algorithms Applied to 3-D Terrain Node Coverage of Wireless Sensor Network</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>The key to the problem of node coverage in wireless sensor networks (WSN) is to deploy a limited number of sensors to achieve maximum coverage. This paper studies the hybrid strategies of multiple evolutionary algorithms, and applies them to the problem of WSN node coverage. We first proposed the hybrid algorithm SFLA-WOA (SWOA) based on Shuffled Frog Leaping Algorithm (SFLA) and Whale Optimization Algorithm (WOA). The SWOA algorithm combines the advantages of SFLA and WOA; that is, it retains the unique evolution model of WOA and also has the excellent co-evolution capability of SFLA. Secondly, using the mutation, crossover and selection operations of the differential evolution (DE) algorithm to further optimize this hybrid algorithm, the SWOA-based SFLA-WOA-DE (SWOAD) algorithm is proposed. In addition, the performance of SWOA and SWOAD has been tested by 30 benchmark functions in the CEC 2017 test set. Experimental results show that the optimization effects of these two algorithms are very outstanding. Finally, the simulation results show that the optimization algorithm proposed in this paper has a good effect on improving the signal coverage of WSN under the actual three-dimensional terrain.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2021/6690824</doi><orcidid>https://orcid.org/0000-0002-8756-2887</orcidid><orcidid>https://orcid.org/0000-0001-5731-4105</orcidid><orcidid>https://orcid.org/0000-0002-3128-9025</orcidid><orcidid>https://orcid.org/0000-0001-5287-017X</orcidid><orcidid>https://orcid.org/0000-0003-2117-0618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2021, Vol.2021 (1)
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2563359889
source Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Communication
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Heuristic
Information industry
Internet of Things
Mutation
Nodes
Optimization
Optimization algorithms
Population
Sensors
Terrain
Wireless networks
Wireless sensor networks
title Hybrid Strategy of Multiple Optimization Algorithms Applied to 3-D Terrain Node Coverage of Wireless Sensor Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Strategy%20of%20Multiple%20Optimization%20Algorithms%20Applied%20to%203-D%20Terrain%20Node%20Coverage%20of%20Wireless%20Sensor%20Network&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Zhang,%20Li-Gang&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2021/6690824&rft_dat=%3Cproquest_cross%3E2563359889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563359889&rft_id=info:pmid/&rfr_iscdi=true