SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis
Mining the distribution of features and sorting items by combined attributes are 2 common tasks in exploring and understanding multi-attribute (or multivariate) data. Up to now, few have pointed out the possibility of merging these 2 tasks into a united exploration context and the potential benefits...
Gespeichert in:
Veröffentlicht in: | Journal of visualization 2021-10, Vol.24 (5), p.1065-1081 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1081 |
---|---|
container_issue | 5 |
container_start_page | 1065 |
container_title | Journal of visualization |
container_volume | 24 |
creator | Li, Zeyu Zhang, Changhong Zhang, Yi Zhang, Jiawan |
description | Mining the distribution of features and sorting items by combined attributes are 2 common tasks in exploring and understanding multi-attribute (or multivariate) data. Up to now, few have pointed out the possibility of merging these 2 tasks into a united exploration context and the potential benefits of doing so. In this paper, we present SemanticAxis, a technique that achieves this goal by enabling analysts to build a semantic vector in two-dimensional space interactively. Essentially, the semantic vector is a linear combination of the original attributes. It can be used to represent and explain abstract concepts implied in local (outliers, clusters) or global (general pattern) features of reduced space, as well as serving as a ranking metric for its defined concepts. In order to validate the significance of combining the above 2 tasks in multi-attribute data analysis, we design and implement a visual analysis system, in which several interactive components cooperate with SemanticAxis seamlessly and expand its capacity to handle complex scenarios. We prove the effectiveness of our system and the SemanticAxis technique via 2 practical cases.
Graphic abstract |
doi_str_mv | 10.1007/s12650-020-00733-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563304348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563304348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-37d082a119e0cfa8774ec604a1963145891f059d31e0b68886b1a61fce6945ed3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FMkyapt2XxCxY8qBcvIU1Tydpta5LC7v56u1bw5mGYYXifYXgQugR6DZTKmwiZyCmh2VhUMkb2R2gGSuZEFTI_HmfGGVHj4hSdxbimNAMuYYbeX9zGtMnbxdbHW-y2fdMF337gzdAkT0xKwZdDcrgyyeByh-NvHtuujSkMNvmuxaatcDDt54E0rWl20cdzdFKbJrqL3z5Hb_d3r8tHsnp-eFouVsQyKBJhsqIqMwCFo7Y2SkrurKDcQCEY8FwVUNO8qBg4WgqllCjBCKitEwXPXcXm6Gq624fua3Ax6XU3hPGJqLNcMEY542pMZVPKhi7G4GrdB78xYaeB6oNDPTnUo0P941DvR4hNUOwPUlz4O_0P9Q1zjnWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563304348</pqid></control><display><type>article</type><title>SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis</title><source>SpringerNature Journals</source><creator>Li, Zeyu ; Zhang, Changhong ; Zhang, Yi ; Zhang, Jiawan</creator><creatorcontrib>Li, Zeyu ; Zhang, Changhong ; Zhang, Yi ; Zhang, Jiawan</creatorcontrib><description>Mining the distribution of features and sorting items by combined attributes are 2 common tasks in exploring and understanding multi-attribute (or multivariate) data. Up to now, few have pointed out the possibility of merging these 2 tasks into a united exploration context and the potential benefits of doing so. In this paper, we present SemanticAxis, a technique that achieves this goal by enabling analysts to build a semantic vector in two-dimensional space interactively. Essentially, the semantic vector is a linear combination of the original attributes. It can be used to represent and explain abstract concepts implied in local (outliers, clusters) or global (general pattern) features of reduced space, as well as serving as a ranking metric for its defined concepts. In order to validate the significance of combining the above 2 tasks in multi-attribute data analysis, we design and implement a visual analysis system, in which several interactive components cooperate with SemanticAxis seamlessly and expand its capacity to handle complex scenarios. We prove the effectiveness of our system and the SemanticAxis technique via 2 practical cases.
Graphic abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-020-00733-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Computer Imaging ; Data analysis ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Multivariate analysis ; Outliers (statistics) ; Pattern Recognition and Graphics ; Ranking ; Regular Paper ; Semantics ; Vision</subject><ispartof>Journal of visualization, 2021-10, Vol.24 (5), p.1065-1081</ispartof><rights>The Visualization Society of Japan 2021</rights><rights>The Visualization Society of Japan 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-37d082a119e0cfa8774ec604a1963145891f059d31e0b68886b1a61fce6945ed3</citedby><cites>FETCH-LOGICAL-c319t-37d082a119e0cfa8774ec604a1963145891f059d31e0b68886b1a61fce6945ed3</cites><orcidid>0000-0002-3379-8456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12650-020-00733-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12650-020-00733-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Zeyu</creatorcontrib><creatorcontrib>Zhang, Changhong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Jiawan</creatorcontrib><title>SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>Mining the distribution of features and sorting items by combined attributes are 2 common tasks in exploring and understanding multi-attribute (or multivariate) data. Up to now, few have pointed out the possibility of merging these 2 tasks into a united exploration context and the potential benefits of doing so. In this paper, we present SemanticAxis, a technique that achieves this goal by enabling analysts to build a semantic vector in two-dimensional space interactively. Essentially, the semantic vector is a linear combination of the original attributes. It can be used to represent and explain abstract concepts implied in local (outliers, clusters) or global (general pattern) features of reduced space, as well as serving as a ranking metric for its defined concepts. In order to validate the significance of combining the above 2 tasks in multi-attribute data analysis, we design and implement a visual analysis system, in which several interactive components cooperate with SemanticAxis seamlessly and expand its capacity to handle complex scenarios. We prove the effectiveness of our system and the SemanticAxis technique via 2 practical cases.
Graphic abstract</description><subject>Classical and Continuum Physics</subject><subject>Computer Imaging</subject><subject>Data analysis</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Multivariate analysis</subject><subject>Outliers (statistics)</subject><subject>Pattern Recognition and Graphics</subject><subject>Ranking</subject><subject>Regular Paper</subject><subject>Semantics</subject><subject>Vision</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FMkyapt2XxCxY8qBcvIU1Tydpta5LC7v56u1bw5mGYYXifYXgQugR6DZTKmwiZyCmh2VhUMkb2R2gGSuZEFTI_HmfGGVHj4hSdxbimNAMuYYbeX9zGtMnbxdbHW-y2fdMF337gzdAkT0xKwZdDcrgyyeByh-NvHtuujSkMNvmuxaatcDDt54E0rWl20cdzdFKbJrqL3z5Hb_d3r8tHsnp-eFouVsQyKBJhsqIqMwCFo7Y2SkrurKDcQCEY8FwVUNO8qBg4WgqllCjBCKitEwXPXcXm6Gq624fua3Ax6XU3hPGJqLNcMEY542pMZVPKhi7G4GrdB78xYaeB6oNDPTnUo0P941DvR4hNUOwPUlz4O_0P9Q1zjnWg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Li, Zeyu</creator><creator>Zhang, Changhong</creator><creator>Zhang, Yi</creator><creator>Zhang, Jiawan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3379-8456</orcidid></search><sort><creationdate>20211001</creationdate><title>SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis</title><author>Li, Zeyu ; Zhang, Changhong ; Zhang, Yi ; Zhang, Jiawan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-37d082a119e0cfa8774ec604a1963145891f059d31e0b68886b1a61fce6945ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classical and Continuum Physics</topic><topic>Computer Imaging</topic><topic>Data analysis</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Multivariate analysis</topic><topic>Outliers (statistics)</topic><topic>Pattern Recognition and Graphics</topic><topic>Ranking</topic><topic>Regular Paper</topic><topic>Semantics</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zeyu</creatorcontrib><creatorcontrib>Zhang, Changhong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Jiawan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zeyu</au><au>Zhang, Changhong</au><au>Zhang, Yi</au><au>Zhang, Jiawan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>24</volume><issue>5</issue><spage>1065</spage><epage>1081</epage><pages>1065-1081</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>Mining the distribution of features and sorting items by combined attributes are 2 common tasks in exploring and understanding multi-attribute (or multivariate) data. Up to now, few have pointed out the possibility of merging these 2 tasks into a united exploration context and the potential benefits of doing so. In this paper, we present SemanticAxis, a technique that achieves this goal by enabling analysts to build a semantic vector in two-dimensional space interactively. Essentially, the semantic vector is a linear combination of the original attributes. It can be used to represent and explain abstract concepts implied in local (outliers, clusters) or global (general pattern) features of reduced space, as well as serving as a ranking metric for its defined concepts. In order to validate the significance of combining the above 2 tasks in multi-attribute data analysis, we design and implement a visual analysis system, in which several interactive components cooperate with SemanticAxis seamlessly and expand its capacity to handle complex scenarios. We prove the effectiveness of our system and the SemanticAxis technique via 2 practical cases.
Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12650-020-00733-z</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3379-8456</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-8875 |
ispartof | Journal of visualization, 2021-10, Vol.24 (5), p.1065-1081 |
issn | 1343-8875 1875-8975 |
language | eng |
recordid | cdi_proquest_journals_2563304348 |
source | SpringerNature Journals |
subjects | Classical and Continuum Physics Computer Imaging Data analysis Engineering Engineering Fluid Dynamics Engineering Thermodynamics Heat and Mass Transfer Multivariate analysis Outliers (statistics) Pattern Recognition and Graphics Ranking Regular Paper Semantics Vision |
title | SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SemanticAxis:%20exploring%20multi-attribute%20data%20by%20semantic%20construction%20and%20ranking%20analysis&rft.jtitle=Journal%20of%20visualization&rft.au=Li,%20Zeyu&rft.date=2021-10-01&rft.volume=24&rft.issue=5&rft.spage=1065&rft.epage=1081&rft.pages=1065-1081&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-020-00733-z&rft_dat=%3Cproquest_cross%3E2563304348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563304348&rft_id=info:pmid/&rfr_iscdi=true |