SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis

Mining the distribution of features and sorting items by combined attributes are 2 common tasks in exploring and understanding multi-attribute (or multivariate) data. Up to now, few have pointed out the possibility of merging these 2 tasks into a united exploration context and the potential benefits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visualization 2021-10, Vol.24 (5), p.1065-1081
Hauptverfasser: Li, Zeyu, Zhang, Changhong, Zhang, Yi, Zhang, Jiawan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1081
container_issue 5
container_start_page 1065
container_title Journal of visualization
container_volume 24
creator Li, Zeyu
Zhang, Changhong
Zhang, Yi
Zhang, Jiawan
description Mining the distribution of features and sorting items by combined attributes are 2 common tasks in exploring and understanding multi-attribute (or multivariate) data. Up to now, few have pointed out the possibility of merging these 2 tasks into a united exploration context and the potential benefits of doing so. In this paper, we present SemanticAxis, a technique that achieves this goal by enabling analysts to build a semantic vector in two-dimensional space interactively. Essentially, the semantic vector is a linear combination of the original attributes. It can be used to represent and explain abstract concepts implied in local (outliers, clusters) or global (general pattern) features of reduced space, as well as serving as a ranking metric for its defined concepts. In order to validate the significance of combining the above 2 tasks in multi-attribute data analysis, we design and implement a visual analysis system, in which several interactive components cooperate with SemanticAxis seamlessly and expand its capacity to handle complex scenarios. We prove the effectiveness of our system and the SemanticAxis technique via 2 practical cases. Graphic abstract
doi_str_mv 10.1007/s12650-020-00733-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563304348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563304348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-37d082a119e0cfa8774ec604a1963145891f059d31e0b68886b1a61fce6945ed3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FMkyapt2XxCxY8qBcvIU1Tydpta5LC7v56u1bw5mGYYXifYXgQugR6DZTKmwiZyCmh2VhUMkb2R2gGSuZEFTI_HmfGGVHj4hSdxbimNAMuYYbeX9zGtMnbxdbHW-y2fdMF337gzdAkT0xKwZdDcrgyyeByh-NvHtuujSkMNvmuxaatcDDt54E0rWl20cdzdFKbJrqL3z5Hb_d3r8tHsnp-eFouVsQyKBJhsqIqMwCFo7Y2SkrurKDcQCEY8FwVUNO8qBg4WgqllCjBCKitEwXPXcXm6Gq624fua3Ax6XU3hPGJqLNcMEY542pMZVPKhi7G4GrdB78xYaeB6oNDPTnUo0P941DvR4hNUOwPUlz4O_0P9Q1zjnWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563304348</pqid></control><display><type>article</type><title>SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis</title><source>SpringerNature Journals</source><creator>Li, Zeyu ; Zhang, Changhong ; Zhang, Yi ; Zhang, Jiawan</creator><creatorcontrib>Li, Zeyu ; Zhang, Changhong ; Zhang, Yi ; Zhang, Jiawan</creatorcontrib><description>Mining the distribution of features and sorting items by combined attributes are 2 common tasks in exploring and understanding multi-attribute (or multivariate) data. Up to now, few have pointed out the possibility of merging these 2 tasks into a united exploration context and the potential benefits of doing so. In this paper, we present SemanticAxis, a technique that achieves this goal by enabling analysts to build a semantic vector in two-dimensional space interactively. Essentially, the semantic vector is a linear combination of the original attributes. It can be used to represent and explain abstract concepts implied in local (outliers, clusters) or global (general pattern) features of reduced space, as well as serving as a ranking metric for its defined concepts. In order to validate the significance of combining the above 2 tasks in multi-attribute data analysis, we design and implement a visual analysis system, in which several interactive components cooperate with SemanticAxis seamlessly and expand its capacity to handle complex scenarios. We prove the effectiveness of our system and the SemanticAxis technique via 2 practical cases. Graphic abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-020-00733-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Computer Imaging ; Data analysis ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Multivariate analysis ; Outliers (statistics) ; Pattern Recognition and Graphics ; Ranking ; Regular Paper ; Semantics ; Vision</subject><ispartof>Journal of visualization, 2021-10, Vol.24 (5), p.1065-1081</ispartof><rights>The Visualization Society of Japan 2021</rights><rights>The Visualization Society of Japan 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-37d082a119e0cfa8774ec604a1963145891f059d31e0b68886b1a61fce6945ed3</citedby><cites>FETCH-LOGICAL-c319t-37d082a119e0cfa8774ec604a1963145891f059d31e0b68886b1a61fce6945ed3</cites><orcidid>0000-0002-3379-8456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12650-020-00733-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12650-020-00733-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Zeyu</creatorcontrib><creatorcontrib>Zhang, Changhong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Jiawan</creatorcontrib><title>SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>Mining the distribution of features and sorting items by combined attributes are 2 common tasks in exploring and understanding multi-attribute (or multivariate) data. Up to now, few have pointed out the possibility of merging these 2 tasks into a united exploration context and the potential benefits of doing so. In this paper, we present SemanticAxis, a technique that achieves this goal by enabling analysts to build a semantic vector in two-dimensional space interactively. Essentially, the semantic vector is a linear combination of the original attributes. It can be used to represent and explain abstract concepts implied in local (outliers, clusters) or global (general pattern) features of reduced space, as well as serving as a ranking metric for its defined concepts. In order to validate the significance of combining the above 2 tasks in multi-attribute data analysis, we design and implement a visual analysis system, in which several interactive components cooperate with SemanticAxis seamlessly and expand its capacity to handle complex scenarios. We prove the effectiveness of our system and the SemanticAxis technique via 2 practical cases. Graphic abstract</description><subject>Classical and Continuum Physics</subject><subject>Computer Imaging</subject><subject>Data analysis</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Multivariate analysis</subject><subject>Outliers (statistics)</subject><subject>Pattern Recognition and Graphics</subject><subject>Ranking</subject><subject>Regular Paper</subject><subject>Semantics</subject><subject>Vision</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FMkyapt2XxCxY8qBcvIU1Tydpta5LC7v56u1bw5mGYYXifYXgQugR6DZTKmwiZyCmh2VhUMkb2R2gGSuZEFTI_HmfGGVHj4hSdxbimNAMuYYbeX9zGtMnbxdbHW-y2fdMF337gzdAkT0xKwZdDcrgyyeByh-NvHtuujSkMNvmuxaatcDDt54E0rWl20cdzdFKbJrqL3z5Hb_d3r8tHsnp-eFouVsQyKBJhsqIqMwCFo7Y2SkrurKDcQCEY8FwVUNO8qBg4WgqllCjBCKitEwXPXcXm6Gq624fua3Ax6XU3hPGJqLNcMEY542pMZVPKhi7G4GrdB78xYaeB6oNDPTnUo0P941DvR4hNUOwPUlz4O_0P9Q1zjnWg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Li, Zeyu</creator><creator>Zhang, Changhong</creator><creator>Zhang, Yi</creator><creator>Zhang, Jiawan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3379-8456</orcidid></search><sort><creationdate>20211001</creationdate><title>SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis</title><author>Li, Zeyu ; Zhang, Changhong ; Zhang, Yi ; Zhang, Jiawan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-37d082a119e0cfa8774ec604a1963145891f059d31e0b68886b1a61fce6945ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classical and Continuum Physics</topic><topic>Computer Imaging</topic><topic>Data analysis</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Multivariate analysis</topic><topic>Outliers (statistics)</topic><topic>Pattern Recognition and Graphics</topic><topic>Ranking</topic><topic>Regular Paper</topic><topic>Semantics</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zeyu</creatorcontrib><creatorcontrib>Zhang, Changhong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Jiawan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zeyu</au><au>Zhang, Changhong</au><au>Zhang, Yi</au><au>Zhang, Jiawan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>24</volume><issue>5</issue><spage>1065</spage><epage>1081</epage><pages>1065-1081</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>Mining the distribution of features and sorting items by combined attributes are 2 common tasks in exploring and understanding multi-attribute (or multivariate) data. Up to now, few have pointed out the possibility of merging these 2 tasks into a united exploration context and the potential benefits of doing so. In this paper, we present SemanticAxis, a technique that achieves this goal by enabling analysts to build a semantic vector in two-dimensional space interactively. Essentially, the semantic vector is a linear combination of the original attributes. It can be used to represent and explain abstract concepts implied in local (outliers, clusters) or global (general pattern) features of reduced space, as well as serving as a ranking metric for its defined concepts. In order to validate the significance of combining the above 2 tasks in multi-attribute data analysis, we design and implement a visual analysis system, in which several interactive components cooperate with SemanticAxis seamlessly and expand its capacity to handle complex scenarios. We prove the effectiveness of our system and the SemanticAxis technique via 2 practical cases. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12650-020-00733-z</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3379-8456</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1343-8875
ispartof Journal of visualization, 2021-10, Vol.24 (5), p.1065-1081
issn 1343-8875
1875-8975
language eng
recordid cdi_proquest_journals_2563304348
source SpringerNature Journals
subjects Classical and Continuum Physics
Computer Imaging
Data analysis
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Heat and Mass Transfer
Multivariate analysis
Outliers (statistics)
Pattern Recognition and Graphics
Ranking
Regular Paper
Semantics
Vision
title SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SemanticAxis:%20exploring%20multi-attribute%20data%20by%20semantic%20construction%20and%20ranking%20analysis&rft.jtitle=Journal%20of%20visualization&rft.au=Li,%20Zeyu&rft.date=2021-10-01&rft.volume=24&rft.issue=5&rft.spage=1065&rft.epage=1081&rft.pages=1065-1081&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-020-00733-z&rft_dat=%3Cproquest_cross%3E2563304348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563304348&rft_id=info:pmid/&rfr_iscdi=true