Visual analysis of droplet dynamics in large-scale multiphase spray simulations
We present a data-driven visual analysis approach for the in-depth exploration of large numbers of droplets. Understanding droplet dynamics in sprays is of interest across many scientific fields for both simulation scientists and engineers. In this paper, we analyze large-scale direct numerical simu...
Gespeichert in:
Veröffentlicht in: | Journal of visualization 2021-10, Vol.24 (5), p.943-961 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 961 |
---|---|
container_issue | 5 |
container_start_page | 943 |
container_title | Journal of visualization |
container_volume | 24 |
creator | Heinemann, Moritz Frey, Steffen Tkachev, Gleb Straub, Alexander Sadlo, Filip Ertl, Thomas |
description | We present a data-driven visual analysis approach for the in-depth exploration of large numbers of droplets. Understanding droplet dynamics in sprays is of interest across many scientific fields for both simulation scientists and engineers. In this paper, we analyze large-scale direct numerical simulation datasets of the two-phase flow of non-Newtonian jets. Our interactive visual analysis approach comprises various dedicated exploration modalities that are supplemented by directly linking to ParaView. This hybrid setup supports a detailed investigation of droplets, both in the spatial domain and in terms of physical quantities . Considering a large variety of extracted physical quantities for each droplet enables investigating different aspects of interest in our data. To get an overview of different types of characteristic behaviors, we cluster massive numbers of droplets to analyze different types of occurring behaviors via domain-specific pre-aggregation, as well as different methods and parameters. Extraordinary temporal patterns are of high interest, especially to investigate edge cases and detect potential simulation issues. For this, we use a neural network-based approach to predict the development of these physical quantities and identify irregularly advected droplets.
Graphic Abstract |
doi_str_mv | 10.1007/s12650-021-00750-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563304293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563304293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2ec5c725dbacb9f2a5852d131beb2d5cd70404a9cf7d1cab2fe6b626ddccecc13</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPAU8R_PRJO1RFr9gYS_qNaRJumbptjWvPfTfG63gzdObN8wMzCB0zegto1TfAeNKUkI5I_nNSJ2gFSu1JGWl5WnGohCkzMQ5ugA40KwsNFuh3XuEybbYdradIQLuG-xTP7RhxH7u7DE6wLHDrU37QMDZNuDj1I5x-LAQMAzJzhhipuwY-w4u0VljWwhXv3eN3h4fXjfPZLt7etncb4kTSoyEByed5tLX1tVVw60sJfdMsDrU3EvnNS1oYSvXaM-crXkTVK248t654BwTa3Sz5A6p_5wCjObQTymXAMOlEoIWvBJZxReVSz1ACo0ZUjzaNBtGzfdwZhnO5DnMz3BGZZNYTLlc7PYh_UX_4_oChINy-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563304293</pqid></control><display><type>article</type><title>Visual analysis of droplet dynamics in large-scale multiphase spray simulations</title><source>SpringerLink Journals</source><creator>Heinemann, Moritz ; Frey, Steffen ; Tkachev, Gleb ; Straub, Alexander ; Sadlo, Filip ; Ertl, Thomas</creator><creatorcontrib>Heinemann, Moritz ; Frey, Steffen ; Tkachev, Gleb ; Straub, Alexander ; Sadlo, Filip ; Ertl, Thomas</creatorcontrib><description>We present a data-driven visual analysis approach for the in-depth exploration of large numbers of droplets. Understanding droplet dynamics in sprays is of interest across many scientific fields for both simulation scientists and engineers. In this paper, we analyze large-scale direct numerical simulation datasets of the two-phase flow of non-Newtonian jets. Our interactive visual analysis approach comprises various dedicated exploration modalities that are supplemented by directly linking to ParaView. This hybrid setup supports a detailed investigation of droplets, both in the spatial domain and in terms of physical quantities . Considering a large variety of extracted physical quantities for each droplet enables investigating different aspects of interest in our data. To get an overview of different types of characteristic behaviors, we cluster massive numbers of droplets to analyze different types of occurring behaviors via domain-specific pre-aggregation, as well as different methods and parameters. Extraordinary temporal patterns are of high interest, especially to investigate edge cases and detect potential simulation issues. For this, we use a neural network-based approach to predict the development of these physical quantities and identify irregularly advected droplets.
Graphic Abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-021-00750-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Computer Imaging ; Computer simulation ; Direct numerical simulation ; Droplets ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Investigations ; Neural networks ; Pattern Recognition and Graphics ; Regular Paper ; Simulation ; Two phase flow ; Vision</subject><ispartof>Journal of visualization, 2021-10, Vol.24 (5), p.943-961</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2ec5c725dbacb9f2a5852d131beb2d5cd70404a9cf7d1cab2fe6b626ddccecc13</citedby><cites>FETCH-LOGICAL-c363t-2ec5c725dbacb9f2a5852d131beb2d5cd70404a9cf7d1cab2fe6b626ddccecc13</cites><orcidid>0000-0002-1872-6905 ; 0000-0003-4019-2505 ; 0000-0002-6749-9710 ; 0000-0002-8949-8452 ; 0000-0001-5718-8903 ; 0000-0003-2515-5263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12650-021-00750-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12650-021-00750-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Heinemann, Moritz</creatorcontrib><creatorcontrib>Frey, Steffen</creatorcontrib><creatorcontrib>Tkachev, Gleb</creatorcontrib><creatorcontrib>Straub, Alexander</creatorcontrib><creatorcontrib>Sadlo, Filip</creatorcontrib><creatorcontrib>Ertl, Thomas</creatorcontrib><title>Visual analysis of droplet dynamics in large-scale multiphase spray simulations</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>We present a data-driven visual analysis approach for the in-depth exploration of large numbers of droplets. Understanding droplet dynamics in sprays is of interest across many scientific fields for both simulation scientists and engineers. In this paper, we analyze large-scale direct numerical simulation datasets of the two-phase flow of non-Newtonian jets. Our interactive visual analysis approach comprises various dedicated exploration modalities that are supplemented by directly linking to ParaView. This hybrid setup supports a detailed investigation of droplets, both in the spatial domain and in terms of physical quantities . Considering a large variety of extracted physical quantities for each droplet enables investigating different aspects of interest in our data. To get an overview of different types of characteristic behaviors, we cluster massive numbers of droplets to analyze different types of occurring behaviors via domain-specific pre-aggregation, as well as different methods and parameters. Extraordinary temporal patterns are of high interest, especially to investigate edge cases and detect potential simulation issues. For this, we use a neural network-based approach to predict the development of these physical quantities and identify irregularly advected droplets.
Graphic Abstract</description><subject>Classical and Continuum Physics</subject><subject>Computer Imaging</subject><subject>Computer simulation</subject><subject>Direct numerical simulation</subject><subject>Droplets</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Investigations</subject><subject>Neural networks</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Simulation</subject><subject>Two phase flow</subject><subject>Vision</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UE1LxDAUDKLguvoHPAU8R_PRJO1RFr9gYS_qNaRJumbptjWvPfTfG63gzdObN8wMzCB0zegto1TfAeNKUkI5I_nNSJ2gFSu1JGWl5WnGohCkzMQ5ugA40KwsNFuh3XuEybbYdradIQLuG-xTP7RhxH7u7DE6wLHDrU37QMDZNuDj1I5x-LAQMAzJzhhipuwY-w4u0VljWwhXv3eN3h4fXjfPZLt7etncb4kTSoyEByed5tLX1tVVw60sJfdMsDrU3EvnNS1oYSvXaM-crXkTVK248t654BwTa3Sz5A6p_5wCjObQTymXAMOlEoIWvBJZxReVSz1ACo0ZUjzaNBtGzfdwZhnO5DnMz3BGZZNYTLlc7PYh_UX_4_oChINy-w</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Heinemann, Moritz</creator><creator>Frey, Steffen</creator><creator>Tkachev, Gleb</creator><creator>Straub, Alexander</creator><creator>Sadlo, Filip</creator><creator>Ertl, Thomas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1872-6905</orcidid><orcidid>https://orcid.org/0000-0003-4019-2505</orcidid><orcidid>https://orcid.org/0000-0002-6749-9710</orcidid><orcidid>https://orcid.org/0000-0002-8949-8452</orcidid><orcidid>https://orcid.org/0000-0001-5718-8903</orcidid><orcidid>https://orcid.org/0000-0003-2515-5263</orcidid></search><sort><creationdate>20211001</creationdate><title>Visual analysis of droplet dynamics in large-scale multiphase spray simulations</title><author>Heinemann, Moritz ; Frey, Steffen ; Tkachev, Gleb ; Straub, Alexander ; Sadlo, Filip ; Ertl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2ec5c725dbacb9f2a5852d131beb2d5cd70404a9cf7d1cab2fe6b626ddccecc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classical and Continuum Physics</topic><topic>Computer Imaging</topic><topic>Computer simulation</topic><topic>Direct numerical simulation</topic><topic>Droplets</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Investigations</topic><topic>Neural networks</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Simulation</topic><topic>Two phase flow</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinemann, Moritz</creatorcontrib><creatorcontrib>Frey, Steffen</creatorcontrib><creatorcontrib>Tkachev, Gleb</creatorcontrib><creatorcontrib>Straub, Alexander</creatorcontrib><creatorcontrib>Sadlo, Filip</creatorcontrib><creatorcontrib>Ertl, Thomas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinemann, Moritz</au><au>Frey, Steffen</au><au>Tkachev, Gleb</au><au>Straub, Alexander</au><au>Sadlo, Filip</au><au>Ertl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual analysis of droplet dynamics in large-scale multiphase spray simulations</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>24</volume><issue>5</issue><spage>943</spage><epage>961</epage><pages>943-961</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>We present a data-driven visual analysis approach for the in-depth exploration of large numbers of droplets. Understanding droplet dynamics in sprays is of interest across many scientific fields for both simulation scientists and engineers. In this paper, we analyze large-scale direct numerical simulation datasets of the two-phase flow of non-Newtonian jets. Our interactive visual analysis approach comprises various dedicated exploration modalities that are supplemented by directly linking to ParaView. This hybrid setup supports a detailed investigation of droplets, both in the spatial domain and in terms of physical quantities . Considering a large variety of extracted physical quantities for each droplet enables investigating different aspects of interest in our data. To get an overview of different types of characteristic behaviors, we cluster massive numbers of droplets to analyze different types of occurring behaviors via domain-specific pre-aggregation, as well as different methods and parameters. Extraordinary temporal patterns are of high interest, especially to investigate edge cases and detect potential simulation issues. For this, we use a neural network-based approach to predict the development of these physical quantities and identify irregularly advected droplets.
Graphic Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12650-021-00750-6</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1872-6905</orcidid><orcidid>https://orcid.org/0000-0003-4019-2505</orcidid><orcidid>https://orcid.org/0000-0002-6749-9710</orcidid><orcidid>https://orcid.org/0000-0002-8949-8452</orcidid><orcidid>https://orcid.org/0000-0001-5718-8903</orcidid><orcidid>https://orcid.org/0000-0003-2515-5263</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-8875 |
ispartof | Journal of visualization, 2021-10, Vol.24 (5), p.943-961 |
issn | 1343-8875 1875-8975 |
language | eng |
recordid | cdi_proquest_journals_2563304293 |
source | SpringerLink Journals |
subjects | Classical and Continuum Physics Computer Imaging Computer simulation Direct numerical simulation Droplets Engineering Engineering Fluid Dynamics Engineering Thermodynamics Heat and Mass Transfer Investigations Neural networks Pattern Recognition and Graphics Regular Paper Simulation Two phase flow Vision |
title | Visual analysis of droplet dynamics in large-scale multiphase spray simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20analysis%20of%20droplet%20dynamics%20in%20large-scale%20multiphase%20spray%20simulations&rft.jtitle=Journal%20of%20visualization&rft.au=Heinemann,%20Moritz&rft.date=2021-10-01&rft.volume=24&rft.issue=5&rft.spage=943&rft.epage=961&rft.pages=943-961&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-021-00750-6&rft_dat=%3Cproquest_cross%3E2563304293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563304293&rft_id=info:pmid/&rfr_iscdi=true |