Influence of Annular Dynamics and Material Behavior in Finite Element Analysis of Barlow’s Mitral Valve Disease

Barlow’s disease affects the entire mitral valve apparatus, by altering several of the fundamental mechanisms in the mitral valve which ensures unidirectional blood flow between the left atrium and the left ventricle. In this paper, a finite element model of a patient diagnosed with Barlow’s disease...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of elasticity 2021-08, Vol.145 (1-2), p.163-190
Hauptverfasser: Aguilera, Hans Martin, Urheim, Stig, Skallerud, Bjørn, Prot, Victorien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue 1-2
container_start_page 163
container_title Journal of elasticity
container_volume 145
creator Aguilera, Hans Martin
Urheim, Stig
Skallerud, Bjørn
Prot, Victorien
description Barlow’s disease affects the entire mitral valve apparatus, by altering several of the fundamental mechanisms in the mitral valve which ensures unidirectional blood flow between the left atrium and the left ventricle. In this paper, a finite element model of a patient diagnosed with Barlow’s disease with patient-specific geometry and boundary conditions is presented. The geometry and boundary conditions are extracted from the echocardiographic assessment of the patient prior to surgery. Material properties representing myxomatous, healthy human and animal mitral valves are implemented and computed response are compared with each other and the echocardiographic images of the patient. This study shows that the annular dilation observed in Barlow’s patients controls several aspects of the mitral valve behavior during ventricular systole. The coaptation of the leaflets is observed to be highly dependent on annular dilation, and the coaptation area reduces rapidly at the onset of mitral regurgitation. Furthermore, the leaflet material implementation is important to predict lack of closure in the FE model correctly. It was observed that using healthy human material parameters in the Barlow’s diseased FE geometry gave severe lack of closure from the onset of mitral regurgitation, while myxomatous material properties showed a more physiological leakage.
doi_str_mv 10.1007/s10659-021-09829-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563188114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563188114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5e4f807d6ded0021434f5bc8210ba355591c8dcfe15ff17e791ac75c560bde143</originalsourceid><addsrcrecordid>eNp9kDtOAzEURS0EEiGwASpL1AZ7PJ5PmQ-BSIlogNZyPM_gaOJJ7ElQOrbB9lgJTgaJjuo151zddxG6ZvSWUZrfBUYzURKaMELLIimJOEE9JnJOkqxgp6hHeZ4SLrg4RxchLCmNWEp7aDN1pt6C04AbgwfObWvl8Xjv1MrqgJWr8Fy14K2q8RDe1c42HluHJ9bZFvB9DStwbRRVvQ82HEKGytfNx_fnV8Bz2_oovqp6B3hsA6gAl-jMqDrA1e_to5fJ_fPokcyeHqajwYxonvGWCEhNQfMqq6Ci8a-Up0YsdJEwulBcCFEyXVTaABPGsBzykimdCy0yuqgg4n100-WufbPZQmjlstn62DPIRGScFQU7UklHad-E4MHItbcr5feSUXmYVnbTylhBHqeVIkq8k0KE3Rv4v-h_rB8pAH1W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563188114</pqid></control><display><type>article</type><title>Influence of Annular Dynamics and Material Behavior in Finite Element Analysis of Barlow’s Mitral Valve Disease</title><source>Springer Nature - Complete Springer Journals</source><creator>Aguilera, Hans Martin ; Urheim, Stig ; Skallerud, Bjørn ; Prot, Victorien</creator><creatorcontrib>Aguilera, Hans Martin ; Urheim, Stig ; Skallerud, Bjørn ; Prot, Victorien</creatorcontrib><description>Barlow’s disease affects the entire mitral valve apparatus, by altering several of the fundamental mechanisms in the mitral valve which ensures unidirectional blood flow between the left atrium and the left ventricle. In this paper, a finite element model of a patient diagnosed with Barlow’s disease with patient-specific geometry and boundary conditions is presented. The geometry and boundary conditions are extracted from the echocardiographic assessment of the patient prior to surgery. Material properties representing myxomatous, healthy human and animal mitral valves are implemented and computed response are compared with each other and the echocardiographic images of the patient. This study shows that the annular dilation observed in Barlow’s patients controls several aspects of the mitral valve behavior during ventricular systole. The coaptation of the leaflets is observed to be highly dependent on annular dilation, and the coaptation area reduces rapidly at the onset of mitral regurgitation. Furthermore, the leaflet material implementation is important to predict lack of closure in the FE model correctly. It was observed that using healthy human material parameters in the Barlow’s diseased FE geometry gave severe lack of closure from the onset of mitral regurgitation, while myxomatous material properties showed a more physiological leakage.</description><identifier>ISSN: 0374-3535</identifier><identifier>EISSN: 1573-2681</identifier><identifier>DOI: 10.1007/s10659-021-09829-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atria ; Automotive Engineering ; Blood flow ; Boundary conditions ; Classical Mechanics ; Dilation ; Finite element method ; Geometry ; Heart valves ; Material properties ; Mathematical models ; Physics ; Physics and Astronomy ; Systole</subject><ispartof>Journal of elasticity, 2021-08, Vol.145 (1-2), p.163-190</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5e4f807d6ded0021434f5bc8210ba355591c8dcfe15ff17e791ac75c560bde143</citedby><cites>FETCH-LOGICAL-c363t-5e4f807d6ded0021434f5bc8210ba355591c8dcfe15ff17e791ac75c560bde143</cites><orcidid>0000-0002-8761-5088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10659-021-09829-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10659-021-09829-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Aguilera, Hans Martin</creatorcontrib><creatorcontrib>Urheim, Stig</creatorcontrib><creatorcontrib>Skallerud, Bjørn</creatorcontrib><creatorcontrib>Prot, Victorien</creatorcontrib><title>Influence of Annular Dynamics and Material Behavior in Finite Element Analysis of Barlow’s Mitral Valve Disease</title><title>Journal of elasticity</title><addtitle>J Elast</addtitle><description>Barlow’s disease affects the entire mitral valve apparatus, by altering several of the fundamental mechanisms in the mitral valve which ensures unidirectional blood flow between the left atrium and the left ventricle. In this paper, a finite element model of a patient diagnosed with Barlow’s disease with patient-specific geometry and boundary conditions is presented. The geometry and boundary conditions are extracted from the echocardiographic assessment of the patient prior to surgery. Material properties representing myxomatous, healthy human and animal mitral valves are implemented and computed response are compared with each other and the echocardiographic images of the patient. This study shows that the annular dilation observed in Barlow’s patients controls several aspects of the mitral valve behavior during ventricular systole. The coaptation of the leaflets is observed to be highly dependent on annular dilation, and the coaptation area reduces rapidly at the onset of mitral regurgitation. Furthermore, the leaflet material implementation is important to predict lack of closure in the FE model correctly. It was observed that using healthy human material parameters in the Barlow’s diseased FE geometry gave severe lack of closure from the onset of mitral regurgitation, while myxomatous material properties showed a more physiological leakage.</description><subject>Atria</subject><subject>Automotive Engineering</subject><subject>Blood flow</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Dilation</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Heart valves</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Systole</subject><issn>0374-3535</issn><issn>1573-2681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kDtOAzEURS0EEiGwASpL1AZ7PJ5PmQ-BSIlogNZyPM_gaOJJ7ElQOrbB9lgJTgaJjuo151zddxG6ZvSWUZrfBUYzURKaMELLIimJOEE9JnJOkqxgp6hHeZ4SLrg4RxchLCmNWEp7aDN1pt6C04AbgwfObWvl8Xjv1MrqgJWr8Fy14K2q8RDe1c42HluHJ9bZFvB9DStwbRRVvQ82HEKGytfNx_fnV8Bz2_oovqp6B3hsA6gAl-jMqDrA1e_to5fJ_fPokcyeHqajwYxonvGWCEhNQfMqq6Ci8a-Up0YsdJEwulBcCFEyXVTaABPGsBzykimdCy0yuqgg4n100-WufbPZQmjlstn62DPIRGScFQU7UklHad-E4MHItbcr5feSUXmYVnbTylhBHqeVIkq8k0KE3Rv4v-h_rB8pAH1W</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Aguilera, Hans Martin</creator><creator>Urheim, Stig</creator><creator>Skallerud, Bjørn</creator><creator>Prot, Victorien</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8761-5088</orcidid></search><sort><creationdate>20210801</creationdate><title>Influence of Annular Dynamics and Material Behavior in Finite Element Analysis of Barlow’s Mitral Valve Disease</title><author>Aguilera, Hans Martin ; Urheim, Stig ; Skallerud, Bjørn ; Prot, Victorien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5e4f807d6ded0021434f5bc8210ba355591c8dcfe15ff17e791ac75c560bde143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atria</topic><topic>Automotive Engineering</topic><topic>Blood flow</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Dilation</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Heart valves</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Systole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilera, Hans Martin</creatorcontrib><creatorcontrib>Urheim, Stig</creatorcontrib><creatorcontrib>Skallerud, Bjørn</creatorcontrib><creatorcontrib>Prot, Victorien</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of elasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguilera, Hans Martin</au><au>Urheim, Stig</au><au>Skallerud, Bjørn</au><au>Prot, Victorien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Annular Dynamics and Material Behavior in Finite Element Analysis of Barlow’s Mitral Valve Disease</atitle><jtitle>Journal of elasticity</jtitle><stitle>J Elast</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>145</volume><issue>1-2</issue><spage>163</spage><epage>190</epage><pages>163-190</pages><issn>0374-3535</issn><eissn>1573-2681</eissn><abstract>Barlow’s disease affects the entire mitral valve apparatus, by altering several of the fundamental mechanisms in the mitral valve which ensures unidirectional blood flow between the left atrium and the left ventricle. In this paper, a finite element model of a patient diagnosed with Barlow’s disease with patient-specific geometry and boundary conditions is presented. The geometry and boundary conditions are extracted from the echocardiographic assessment of the patient prior to surgery. Material properties representing myxomatous, healthy human and animal mitral valves are implemented and computed response are compared with each other and the echocardiographic images of the patient. This study shows that the annular dilation observed in Barlow’s patients controls several aspects of the mitral valve behavior during ventricular systole. The coaptation of the leaflets is observed to be highly dependent on annular dilation, and the coaptation area reduces rapidly at the onset of mitral regurgitation. Furthermore, the leaflet material implementation is important to predict lack of closure in the FE model correctly. It was observed that using healthy human material parameters in the Barlow’s diseased FE geometry gave severe lack of closure from the onset of mitral regurgitation, while myxomatous material properties showed a more physiological leakage.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10659-021-09829-5</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-8761-5088</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0374-3535
ispartof Journal of elasticity, 2021-08, Vol.145 (1-2), p.163-190
issn 0374-3535
1573-2681
language eng
recordid cdi_proquest_journals_2563188114
source Springer Nature - Complete Springer Journals
subjects Atria
Automotive Engineering
Blood flow
Boundary conditions
Classical Mechanics
Dilation
Finite element method
Geometry
Heart valves
Material properties
Mathematical models
Physics
Physics and Astronomy
Systole
title Influence of Annular Dynamics and Material Behavior in Finite Element Analysis of Barlow’s Mitral Valve Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Annular%20Dynamics%20and%20Material%20Behavior%20in%20Finite%20Element%20Analysis%20of%20Barlow%E2%80%99s%20Mitral%20Valve%20Disease&rft.jtitle=Journal%20of%20elasticity&rft.au=Aguilera,%20Hans%20Martin&rft.date=2021-08-01&rft.volume=145&rft.issue=1-2&rft.spage=163&rft.epage=190&rft.pages=163-190&rft.issn=0374-3535&rft.eissn=1573-2681&rft_id=info:doi/10.1007/s10659-021-09829-5&rft_dat=%3Cproquest_cross%3E2563188114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563188114&rft_id=info:pmid/&rfr_iscdi=true