Influence of Annular Dynamics and Material Behavior in Finite Element Analysis of Barlow’s Mitral Valve Disease
Barlow’s disease affects the entire mitral valve apparatus, by altering several of the fundamental mechanisms in the mitral valve which ensures unidirectional blood flow between the left atrium and the left ventricle. In this paper, a finite element model of a patient diagnosed with Barlow’s disease...
Gespeichert in:
Veröffentlicht in: | Journal of elasticity 2021-08, Vol.145 (1-2), p.163-190 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 190 |
---|---|
container_issue | 1-2 |
container_start_page | 163 |
container_title | Journal of elasticity |
container_volume | 145 |
creator | Aguilera, Hans Martin Urheim, Stig Skallerud, Bjørn Prot, Victorien |
description | Barlow’s disease affects the entire mitral valve apparatus, by altering several of the fundamental mechanisms in the mitral valve which ensures unidirectional blood flow between the left atrium and the left ventricle. In this paper, a finite element model of a patient diagnosed with Barlow’s disease with patient-specific geometry and boundary conditions is presented. The geometry and boundary conditions are extracted from the echocardiographic assessment of the patient prior to surgery. Material properties representing myxomatous, healthy human and animal mitral valves are implemented and computed response are compared with each other and the echocardiographic images of the patient. This study shows that the annular dilation observed in Barlow’s patients controls several aspects of the mitral valve behavior during ventricular systole. The coaptation of the leaflets is observed to be highly dependent on annular dilation, and the coaptation area reduces rapidly at the onset of mitral regurgitation. Furthermore, the leaflet material implementation is important to predict lack of closure in the FE model correctly. It was observed that using healthy human material parameters in the Barlow’s diseased FE geometry gave severe lack of closure from the onset of mitral regurgitation, while myxomatous material properties showed a more physiological leakage. |
doi_str_mv | 10.1007/s10659-021-09829-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563188114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563188114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5e4f807d6ded0021434f5bc8210ba355591c8dcfe15ff17e791ac75c560bde143</originalsourceid><addsrcrecordid>eNp9kDtOAzEURS0EEiGwASpL1AZ7PJ5PmQ-BSIlogNZyPM_gaOJJ7ElQOrbB9lgJTgaJjuo151zddxG6ZvSWUZrfBUYzURKaMELLIimJOEE9JnJOkqxgp6hHeZ4SLrg4RxchLCmNWEp7aDN1pt6C04AbgwfObWvl8Xjv1MrqgJWr8Fy14K2q8RDe1c42HluHJ9bZFvB9DStwbRRVvQ82HEKGytfNx_fnV8Bz2_oovqp6B3hsA6gAl-jMqDrA1e_to5fJ_fPokcyeHqajwYxonvGWCEhNQfMqq6Ci8a-Up0YsdJEwulBcCFEyXVTaABPGsBzykimdCy0yuqgg4n100-WufbPZQmjlstn62DPIRGScFQU7UklHad-E4MHItbcr5feSUXmYVnbTylhBHqeVIkq8k0KE3Rv4v-h_rB8pAH1W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563188114</pqid></control><display><type>article</type><title>Influence of Annular Dynamics and Material Behavior in Finite Element Analysis of Barlow’s Mitral Valve Disease</title><source>Springer Nature - Complete Springer Journals</source><creator>Aguilera, Hans Martin ; Urheim, Stig ; Skallerud, Bjørn ; Prot, Victorien</creator><creatorcontrib>Aguilera, Hans Martin ; Urheim, Stig ; Skallerud, Bjørn ; Prot, Victorien</creatorcontrib><description>Barlow’s disease affects the entire mitral valve apparatus, by altering several of the fundamental mechanisms in the mitral valve which ensures unidirectional blood flow between the left atrium and the left ventricle. In this paper, a finite element model of a patient diagnosed with Barlow’s disease with patient-specific geometry and boundary conditions is presented. The geometry and boundary conditions are extracted from the echocardiographic assessment of the patient prior to surgery. Material properties representing myxomatous, healthy human and animal mitral valves are implemented and computed response are compared with each other and the echocardiographic images of the patient. This study shows that the annular dilation observed in Barlow’s patients controls several aspects of the mitral valve behavior during ventricular systole. The coaptation of the leaflets is observed to be highly dependent on annular dilation, and the coaptation area reduces rapidly at the onset of mitral regurgitation. Furthermore, the leaflet material implementation is important to predict lack of closure in the FE model correctly. It was observed that using healthy human material parameters in the Barlow’s diseased FE geometry gave severe lack of closure from the onset of mitral regurgitation, while myxomatous material properties showed a more physiological leakage.</description><identifier>ISSN: 0374-3535</identifier><identifier>EISSN: 1573-2681</identifier><identifier>DOI: 10.1007/s10659-021-09829-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atria ; Automotive Engineering ; Blood flow ; Boundary conditions ; Classical Mechanics ; Dilation ; Finite element method ; Geometry ; Heart valves ; Material properties ; Mathematical models ; Physics ; Physics and Astronomy ; Systole</subject><ispartof>Journal of elasticity, 2021-08, Vol.145 (1-2), p.163-190</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5e4f807d6ded0021434f5bc8210ba355591c8dcfe15ff17e791ac75c560bde143</citedby><cites>FETCH-LOGICAL-c363t-5e4f807d6ded0021434f5bc8210ba355591c8dcfe15ff17e791ac75c560bde143</cites><orcidid>0000-0002-8761-5088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10659-021-09829-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10659-021-09829-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Aguilera, Hans Martin</creatorcontrib><creatorcontrib>Urheim, Stig</creatorcontrib><creatorcontrib>Skallerud, Bjørn</creatorcontrib><creatorcontrib>Prot, Victorien</creatorcontrib><title>Influence of Annular Dynamics and Material Behavior in Finite Element Analysis of Barlow’s Mitral Valve Disease</title><title>Journal of elasticity</title><addtitle>J Elast</addtitle><description>Barlow’s disease affects the entire mitral valve apparatus, by altering several of the fundamental mechanisms in the mitral valve which ensures unidirectional blood flow between the left atrium and the left ventricle. In this paper, a finite element model of a patient diagnosed with Barlow’s disease with patient-specific geometry and boundary conditions is presented. The geometry and boundary conditions are extracted from the echocardiographic assessment of the patient prior to surgery. Material properties representing myxomatous, healthy human and animal mitral valves are implemented and computed response are compared with each other and the echocardiographic images of the patient. This study shows that the annular dilation observed in Barlow’s patients controls several aspects of the mitral valve behavior during ventricular systole. The coaptation of the leaflets is observed to be highly dependent on annular dilation, and the coaptation area reduces rapidly at the onset of mitral regurgitation. Furthermore, the leaflet material implementation is important to predict lack of closure in the FE model correctly. It was observed that using healthy human material parameters in the Barlow’s diseased FE geometry gave severe lack of closure from the onset of mitral regurgitation, while myxomatous material properties showed a more physiological leakage.</description><subject>Atria</subject><subject>Automotive Engineering</subject><subject>Blood flow</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Dilation</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Heart valves</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Systole</subject><issn>0374-3535</issn><issn>1573-2681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kDtOAzEURS0EEiGwASpL1AZ7PJ5PmQ-BSIlogNZyPM_gaOJJ7ElQOrbB9lgJTgaJjuo151zddxG6ZvSWUZrfBUYzURKaMELLIimJOEE9JnJOkqxgp6hHeZ4SLrg4RxchLCmNWEp7aDN1pt6C04AbgwfObWvl8Xjv1MrqgJWr8Fy14K2q8RDe1c42HluHJ9bZFvB9DStwbRRVvQ82HEKGytfNx_fnV8Bz2_oovqp6B3hsA6gAl-jMqDrA1e_to5fJ_fPokcyeHqajwYxonvGWCEhNQfMqq6Ci8a-Up0YsdJEwulBcCFEyXVTaABPGsBzykimdCy0yuqgg4n100-WufbPZQmjlstn62DPIRGScFQU7UklHad-E4MHItbcr5feSUXmYVnbTylhBHqeVIkq8k0KE3Rv4v-h_rB8pAH1W</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Aguilera, Hans Martin</creator><creator>Urheim, Stig</creator><creator>Skallerud, Bjørn</creator><creator>Prot, Victorien</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8761-5088</orcidid></search><sort><creationdate>20210801</creationdate><title>Influence of Annular Dynamics and Material Behavior in Finite Element Analysis of Barlow’s Mitral Valve Disease</title><author>Aguilera, Hans Martin ; Urheim, Stig ; Skallerud, Bjørn ; Prot, Victorien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5e4f807d6ded0021434f5bc8210ba355591c8dcfe15ff17e791ac75c560bde143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atria</topic><topic>Automotive Engineering</topic><topic>Blood flow</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Dilation</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Heart valves</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Systole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilera, Hans Martin</creatorcontrib><creatorcontrib>Urheim, Stig</creatorcontrib><creatorcontrib>Skallerud, Bjørn</creatorcontrib><creatorcontrib>Prot, Victorien</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of elasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguilera, Hans Martin</au><au>Urheim, Stig</au><au>Skallerud, Bjørn</au><au>Prot, Victorien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Annular Dynamics and Material Behavior in Finite Element Analysis of Barlow’s Mitral Valve Disease</atitle><jtitle>Journal of elasticity</jtitle><stitle>J Elast</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>145</volume><issue>1-2</issue><spage>163</spage><epage>190</epage><pages>163-190</pages><issn>0374-3535</issn><eissn>1573-2681</eissn><abstract>Barlow’s disease affects the entire mitral valve apparatus, by altering several of the fundamental mechanisms in the mitral valve which ensures unidirectional blood flow between the left atrium and the left ventricle. In this paper, a finite element model of a patient diagnosed with Barlow’s disease with patient-specific geometry and boundary conditions is presented. The geometry and boundary conditions are extracted from the echocardiographic assessment of the patient prior to surgery. Material properties representing myxomatous, healthy human and animal mitral valves are implemented and computed response are compared with each other and the echocardiographic images of the patient. This study shows that the annular dilation observed in Barlow’s patients controls several aspects of the mitral valve behavior during ventricular systole. The coaptation of the leaflets is observed to be highly dependent on annular dilation, and the coaptation area reduces rapidly at the onset of mitral regurgitation. Furthermore, the leaflet material implementation is important to predict lack of closure in the FE model correctly. It was observed that using healthy human material parameters in the Barlow’s diseased FE geometry gave severe lack of closure from the onset of mitral regurgitation, while myxomatous material properties showed a more physiological leakage.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10659-021-09829-5</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-8761-5088</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0374-3535 |
ispartof | Journal of elasticity, 2021-08, Vol.145 (1-2), p.163-190 |
issn | 0374-3535 1573-2681 |
language | eng |
recordid | cdi_proquest_journals_2563188114 |
source | Springer Nature - Complete Springer Journals |
subjects | Atria Automotive Engineering Blood flow Boundary conditions Classical Mechanics Dilation Finite element method Geometry Heart valves Material properties Mathematical models Physics Physics and Astronomy Systole |
title | Influence of Annular Dynamics and Material Behavior in Finite Element Analysis of Barlow’s Mitral Valve Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Annular%20Dynamics%20and%20Material%20Behavior%20in%20Finite%20Element%20Analysis%20of%20Barlow%E2%80%99s%20Mitral%20Valve%20Disease&rft.jtitle=Journal%20of%20elasticity&rft.au=Aguilera,%20Hans%20Martin&rft.date=2021-08-01&rft.volume=145&rft.issue=1-2&rft.spage=163&rft.epage=190&rft.pages=163-190&rft.issn=0374-3535&rft.eissn=1573-2681&rft_id=info:doi/10.1007/s10659-021-09829-5&rft_dat=%3Cproquest_cross%3E2563188114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563188114&rft_id=info:pmid/&rfr_iscdi=true |